如图所示,已知抛物线y=ax的平方加bx加3余x轴

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:39:16
已知抛物线y=ax^2+bx+c的图像如图所示,试判断x的方程ax^2+bx+c-3=0的情况____.(填空题)&nb

一根再问:?再答:有一个实数根再答:向下平移3个单位

已知抛物线y=ax²+bx+c(a≠0)如图所示

a>0(开口向上)b>0(对称轴在y轴左侧,ab同号)c>0(与y轴交点在x轴上方)b²-4ac0(x=1时y>0)a-b+c>0(x=-1时y>0)4a+4b+4c>0(4倍a+b+c)(

已知抛物线y=ax²+bx+c的图像如图所示,则下列结论正确的是?

A.不选.y(1)=a+b+c,由于对称轴和与横坐标的交点都不确定,y(1)值大小不确定.B.不选.由图知,对称轴x=-b/2a>0,且抛物线开口向上,a>0,故b0,故a-b+c>0.

在线等求大神已知抛物线y=ax^2+bx+c的对称轴是直线x=3,抛物线

再问:活捉学霸一只,一手好字各种羡慕0.0学霸跟我回家吧

1已知抛物线y=x^2+ax+a+2

第一个是与什么有交点?要是与X轴,就x^2+ax+a+2=0,求出x的2个值.两点距离最短,就只有1个交点,根据b^2-4ac=0,得出a^2-4(a+2)=0,得出a.2,根据y=x^2-(k+1)

已知抛物线y=ax平方+bx+c如图所示,则关于x的方程ax平方+bx+c-1=0的根的情况

有两个不相等的实数根,且一正一负ax平方+bx+c-1=0就是ax平方+bx+c=1即y=1,从图像上可以看出,y=1,y轴两侧都有相应的x存在.

已知抛物线y=ax平方+bx+c

∵有最高点∴a<0①;∵最大值是4,∴(4ac-b∧2)/4a=4②;再代入(3,0)(0,3)得9a+3b+c=0③;c=3④;①②③④即可得解再问:我奇迹般的比你先做出来,不过还是谢谢你再答:呵呵

已知抛物线y=ax²+bx+c的图像如图所示:

解(1)由题意可以知道:该抛物线过(-1,0),(5,0),(0,-2.5)把这三个点代入抛物线方程可得:a-b+c=0;25a+5b+c=0;c=-2.5解之得:a=1/2;b=-2;c=-2.5所

已知抛物线y=ax²+bx+c的图像如图所示,则a( )0,b( )0,c( )0,2a+b( )0,a+b+

已知抛物线y=ax²+bx+c的图像如图所示,则a()0,c(>)0,2a+b(=)0,a+b+c(>)0

抛物线y=ax2+2ax+a2+2的一部分如图所示,求该抛物线在y轴左侧与x轴的交点坐标.

如图知,抛物线y=ax2+2ax+a2+2过点(1,0)∴a+2a+a2+2=0,a<0,解得a=-1或-2,∵抛物线与x轴交于两点,∴△=4a2-4a(a2+2)>0,a<0,解得,a<-1,∴a=

抛物线y=ax平方+bx+c和直线y=mx+n的图像如图所示,看图回答问题

从图中可以看出,抛物线的对称轴为:x=3因此,抛物线可以表示为:y=a(x-3)²+k将(1,0)、(4,2)代入上式:0=a(1-3)²+k4a+k=0.(1)2=a(4-3)&

已知函数Y=2X的图像和抛物线Y=AX的平方+3

12,由题意,A(1,2),B(0,3).所以s△AOB的底边OB=3,高为1.故s△AOB=1/2×3=3/2..13,由于(2,b)在y=2x上,所以b=4..把x=2,y=4代入y=ax

已知如图所示的抛物线y=ax²+bx+c,则关于x的方程ax²+bx+c-3=0的根的情况是( )A

选C,因为ax²+bx+c-3相当于把抛物线y=ax²+bx+c图像下移三个单位,所以根据图中所示,仅有一根

已知抛物线y=ax2+bx+c的图象如图所示,

(1)∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴b<0;∵抛物线与y轴负半轴相交,∴c<0,∵抛物线与x轴交于两点,∴b2-4ac>0,∵x=-1时,y<0,∴a-b+c<0;(2)由函数的图

已知抛物线y=ax2-3ax+4,

(1)抛物线的对称轴为x=-−3a2a=32;(2)将A(-1,0)代入y=ax2-3ax+4得,a+3a+4=0,解得a=-1,解析式为y=-x2+3x+4.当y=0时,原式可化为x2-3x-4=0

抛物线抛物线y=ax的平方+bx+c.

将A、B点坐标代入抛物线方程,得c=1,4a+2b+c=-3即2a+b=-2,又因为抛物线关于x=-1对称,则也过A'(-2,1),代入得2a=b,综上,a=-1/2,b=-1,c=1.抛物线解析式为

已知抛物线Y=aX^2(a

y=ax^2,x^2=2*(1/2a)*y,即p=1/2a所以F(0,p/2)即F(0,1/4a),准线l:y=-p/2即y=-1/4a(1)直线L斜率不存在.易得只有一交点,不合题意(2)设直线L:

抛物线y=ax2+2ax+a2+2的一部分如图所示,那么该抛物线在y轴右侧与x轴交点的坐标是(  )

∵抛物线y=ax2+2ax+a2+2的对称轴为x=-2a2a=-1,∴该抛物线与x轴的另一个交点到x=-1的距离为2,∴抛物线y=ax2+2ax+a2+2与x轴的另一个交点坐标为(1,0).故选B.

1.已知抛物线y=ax²经过A(-2,-4).(1)求抛物线的函数关系式

1、-4=a(-2)²∴a=-1∴y=-x² 当x=-3时y=-9∴(-3,-8)不在图像上 B点的坐标是(2,-4)∴AB=4O到AB的距离是4∴S=4×4/