如图所示固定在竖直面内的光滑半圆轨道与粗糙平面轨道在

来源:学生作业帮助网 编辑:作业帮 时间:2024/10/06 21:18:45
如图所示,在光滑的水平面上停放着一辆平板车,在车上的左端放有一木块B.车左边紧邻一个固定在竖直面内、半径为R的14圆弧形

(1)设木块A到达圆弧底端时得速度为v0,对木块A沿圆弧下滑得过程,根据机械能守恒定律,有:mgR=12mv02在A、B碰撞得过程中,两木块组成得系统动量守恒,设碰撞后的共同速度大小为v1,则:mv0

如图所示 ,在竖直平面内固定的 圆形绝缘轨道的圆心在O点、半径为r,内壁光滑,A、B两点分别是圆弧的最低

重力和电场力的合力可以看做一个新的“倾斜的”重力C点速度最快,也就是新的“最低点”,对应的D点就是“最高点”,所以如果在B点不受压力的话小球是不可能到达D点的.题中已说了“小球做完整的圆周运动”所以速

如图所示,ABDO是固定在竖直平面内的光滑轨道,AB是半径为R=15 m的四分之一圆周轨道,半径OA处于水平位置

1)机械能守恒:mgh=1/2mv²解得v=10√(2)=14.142)机械能守恒:mgh=1/2mv²,小球脱离轨道后降地时长:t=√(2R/2/g),其中R=15由几何关系得同

如图所示,一固定在竖直平面内的光滑半圆形轨道ABC在C处与水平地面相切,轨道半径R=0.5m.

我还是给你讲思路吧.你看,小球从A点抛出时将做平抛运动,水平位移CD=1.AC高为h=1m由h=1/2gt2算出时间t.再由s=vt算出小球通过A点时的速度.再由能量守恒算出C点的速度.然后有知道摩擦

24,如图所示,一固定在竖直平面内的光滑的半圆形轨道ABC,其半径R=0.5m,

(1)恰好通过,即向心力就是重力:mg=mv²/Rv=√5m/s(根号5米每秒)(2)根据运动独立性,2R=½gt²t=√5/5s(五分之根号五秒)CD距离x=vt=1m

一个半径R=1m的圆弧形光滑轨道固定在竖直平面内

到达B速度方向为切线方向,即与水平面成60度角所以竖直方向速度为Vy=根号3*Vx=4根号3m/s,由于v^2=2gh,所以h为2.4mmg(h+R-R*sin60)=1/2mVc^2-1/2mV0^

如图所示,光滑水平面AB与光滑竖直面内的半圆形导轨在B衔接

①物块恰能完成半圆周运动到达C点mg=mv^2/R由平抛运动规律2R=1/2gt^2x=vt联立解方程得x=2R由能量守恒得②弹簧对物体的弹力做的功WW=EP=mg2R+1/2mV^2=5mgR/2③

如图所示,固定在竖直面内的光滑半圆形轨道与粗糙水平轨道在B点平滑连接,轨道半径R=0.5m,一质量m=0.2kg的小物块

(1)A到B的过程中推力与摩擦力做功,得:Fx-μmgL=12mvB2①在B点时重力与支持力的合力提供向心力,得:NB-mg=mv2BR联立解得:NB=6N   根据牛顿

如图所示,半径为R的光滑半圆轨道ABC固定在竖直平面内,它的底端与光滑水平轨道相切

小球过C后落地时间:t=√(2(2R)/g)此时水平位移:4R=vc*tC点对顶压力:Pc=m*vc²/R-mgC点加速度:ac1=g+vc²/R过C点加速度:ac2=g加速度比:

如图所示,长为L的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直平面内作圆周运动,

首先先说一下题目不严谨的地方,轻杆自始至终都没有对小球的弹力作用,而是绳子.你问的是“为什么当v由0逐渐增大到根号gL时,杆对小球的弹力逐渐减小”,但是在整个过程中,小球在任何时刻的速度都不是0,在最

关于圆周运动如图所示,半径为R,表面光滑的半圆柱体固定于水平地面,其圆心在O点.位于竖直面内的曲线轨道AB的底端水平,与

OB=(1/2)gt²t=√(2OB/g)=√(2R/g)OC=vt=√(gR)*√(2R/g)=√(2R²)=√2ROC=√2R>R沿着圆柱面滑下来条件是OC<R,因

如图所示,半径为R的光滑半圆面固定在竖直平面内,其直径AB处于竖直方向上.一质量为m的小球以初速度v0从轨道的最低点A水

(1)小球过B点时,由牛顿第二定律可得:mg=mv2BR解得:vB=gR(2)小球从A点到B点,由动能定理可得:−mg•2R=12mv2B−12mv20解得:v0=5gR(3)对小球经过A点时做受力分

如图所示,半径R=0.9m的光滑的半圆轨道固定在竖直平面内,直径AC竖直,下端A与光滑的水平轨道相切.一小球沿水平轨道进

(1)设小球的质量为m,它通过最高点C时的速度为vc,根据牛顿第二定律,有:mg+3mg=mv2cR代人数据解得:vc=4gR=4×10×0.9m/s=6m/s  设小球在A点的速

关于一道高考题的探究如图所示,光滑绝缘的细圆管弯成半径为R的半圆形,固定在竖直面内,管口B、C的连线水平.质量为m的带正

可以求啊,回到A点的过程电场力的水平分量没有做功,只有竖直分量做功,直接用动能定理就可以求了:1/2mv^2=4mgR,求出速度大小再问:麻烦详细求出来看一下呢再答:v^2=8gR,速度为根号下8gR

如图所示,长为l的细杆,质量为m0,两端各固定质量分别为m和2m的小球,杆可绕水平光滑固定轴O在竖直面内转动,转轴O距两

你有些数据打得不清楚,比如说m小球碰前速度和碰后速度,O的位置等.如果你只是不会求转动惯量的话,那我就直接告诉你怎么求.首先,细杆绕质心的转动惯量是1/12*mL^2,这个数据应该是要背的,否则每一次

如图所示,光滑水平面 与竖直面内粗糙的

恰好到达C点就是说速度为V=根号gR你说的到达C点为0吧?这个想法是错误的恰好到达最高点的问题这个跟绳子拉球的问题相同(V=根号gR)和杆子圆管问题不同(V=0)就点到这了中间都是计算过程这里不好打出

(2012•漳州一模)如图所示,水平传送带AB的右端与在竖直面内的用内径光滑的钢管弯成的“9”形固定轨道相接,钢管内径很

(1)滑块在传送带上加速运动时,由牛顿第二定律得知  μmg=ma得a=2m/s2加速到与传送带速度相同所需时间为t=v0a=2s此过程位移s=12at2=4m此时物块恰好到达B端

如图所示,长度为L的轻杆一段固定一个质量为m的小球,另一端是光滑的固定轴O,小球在一向右水平拉力作用下绕轴在竖直面内匀速

(1)杆转动的角速度ω=θ/t,球的线速度v=ωL=Lθ/t.匀速转动,切线方向合外力为0,F垂直杆方向上的分力(设为F1)与重力在该方向上的平衡,杆与水平成α角时,F1=mgcosα故F的功率为P=

如图所示,ABCDE为固定在竖直平面内的轨道,ABC为直轨道,AB光滑,BC粗糙,CDE为光滑圆弧轨道,轨道半径为R,直

(1)小物体下滑到C点速度为零.小物体才能第一次滑入圆弧轨道即刚好做简谐运动.从C到D由机械能守恒定律有:mgR(1-cosθ)=12mvD2    ①在D点用