如图正方形abcd中e为bc上,f在ab上,且角fde等于45度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 13:46:08
如图,正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF.

(1)证明:∵ABCD是正方形,∴DC=BC,∠DCB=∠FCE,∵CE=CF,∴△DCF≌△BCE;(2)∵△BCE≌△DCF,∴∠DFC=∠BEC=60°,∵CE=CF,∴∠CFE=45°,∴∠E

如图,在正方形ABCD中,F为DC中点,E为BC上一点,且EC=1/4BC,证明∠AFE=90°

连接AE因为ABCD为正方形,设AB=BC=CD=DA=a,又EC=1/4BC,F为DC中点,所以有BE=3/4a,CE=1/4a,CF=DF=1/2a由勾股定理,知AF平方=DF平方+AD平方=5/

如图,在正方形ABCD中,E为CD的中点,F为BC上的一点,且CF=1/4BC,试说明:AE垂直EF

因为在正方形ABCD中,E为CD中点,所以DE=EC=1/2AD因为CF=1/4BC,且BC=AD,所以CF=1/2CE因为角D=角C=90度所以直角三角形ADE相似于直角三角形ECF所以角DAE=角

如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,边长为2,求正方形面积

显然,△ABE≌△ADF∴∠BAE=∠DAF∴∠CAE=∠CAF=30°∴△CAE≌△CAF∴CE=CF∵AE=AF∴AC垂直平分EF∴FG=EG=1,AG=√3∵△CEF是等腰直角三角形∴CG=EG

已知,如图,正方形abcd中,E为BC上一点,AF平分

是AE=BE+DF吧!再问:是,我打错了。求解!再答: 延长EB至G点,使BG=DF,链接AG已知,∠DAF=∠FAE,边AD=AB∴ΔADF≌ΔABG(SAS)∴∠BAG=∠DAF∵∠DA

如图,正方形ABCD中,E为BC上一点,AF平分∠DAE,求证:BE+DF=AE

在CB延长线上截取BG=DF,连接AGBG=DF,再问:

如图,正方形ABCD中,E、F分别在BC、CD上,EF=BE+DF.

⑴证明:把⊿ABE绕A逆时针旋转90º,到达⊿ADG∵EF=BE+DFFG=FD+BE∴FG=FE又 AE=AGAF=AF∴ΔAFE≌ΔAFG ﹙SSS﹚∴∠FAE=&#

如图,正方形ABCD中,E为BC的中点,F在CD上,且AF=BC+CF.求证:AE平分角BAF

证明:连接FE并延长FE交AB的延长线于G点因为四边形ABCD是正方形所以∠DCB=∠CBA=Rt∠=90度因为∠CBG=180度-∠CBA所以∠DCB=∠CBG因为E是BC的中点所以CE=BE所以E

如图在正方形ABCD中,E为AB中点,F是BC上一点,且BF=1/4BC,求证DE⊥EF

令BF=a则BE=AE=2aAD=4a所以DE=2√5aEF=√5a直角三角形CFD中CF=4a,CF=3a所以DF=5a所以DF²=DE²+EF²所以角DEF是直角所以

如图,在正方形ABCD中,E为ab的中点,f为bc上的一点,且bf=4分之一bc,求证:de垂直ef

证明:∵ABCD是正方形∴AD=AB=BC,∠A=∠B=90º∵AE=BE=½ABBF=¼BC∴AE/AD=BF/BE=½又∵∠EBF=∠DAE=90º

如图在正方形ABCD中,F为CD的中点,E为BC上的一点,且EC=四分之一BC 求证∠AFE=90°

只要证明三角形ECF相似于三角形FDA就行了我记得是不是有个定理,对应边成比例,对应角相等的三角形就是相似三角形啊!因为EC=1/4BC,BC=CD=AD,DF=1/2CD所以,EC/FD=CF/AD

如图,正方形ABCD中,E为BC中点,F在CD上,且AF=BC+CF 求证:AE平分角BAF

证明:延长DC,AE交于M,因为E为BC中点所以BE=CE又因为在正方形ABCD中,∠B=∠BCM,∠AEB=∠MEC,所以△ABE≌△MCE(ASA)所以AB=MC,因为AF=BC+CF所以AF=M

已知:如图,正方形ABCD中,E为BC上一点,AF平分

(没时间画图,请谅解.)延长CD在CD延长线上截取DG=BE在△ABE与△ADG中AB=AD∠B=∠ADB=90°BE=DG∴△ABE≌△ADG(SAS)∴AE=AD,∠BAE=∠DAG∴∠EAG=9

如图,在正方形ABCD中,F为DC的中点,E为BC上的一点,且EC=1/4BC,那么AF垂直EF.

CE=1/4*BCBE=3/4*BCAF^2=AD^2+DF^2=AD^2+1/4*CD^2=5/4*AD^2EF^2=EC^2+FC^2=1/16*BC^2+1/4*DC^2=5/16*AD^2AC

如图,在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=1/4BC.求证:AE⊥EF.

连接AF设AB=AD=BC=CD=4∴E为CD的中点DE=CE=1/2CD=2∵CF=1/4BC=1∴BF=3∴勾股定理:AE²=AD²+DE²=4²+2

如图,在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=?BC,试说明AE⊥EF.

在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=(1/4)BC,试说明AE⊥EF.因为,在△ADE和△ECF中,∠ADE=90°=∠ECF,AD/DE=2=EC/CF,所以,△ADE∽△E

已知:如图,正方形ABCD中,E为BC上一点,AF平分∠DAE交CD于F

将AF顺时针旋转90º到AG位置,如图.连接BG.AB是AD顺时针旋转90º的位置.所以ΔABG是ΔADF顺时针旋转90º得到的三角形.于是,BG=DF,∠5=∠1,∠A

如图,在菱形ABCD中,点E,F为BC上两点,且BE=CF,AF=DE,求证四边形ABCD是正方形

如图,∵BE+CE=BCCF+BF=BCCF=BE∴BF=CE∵四边形ABCD为菱形∴AB=CD∵在△ABF和△DCE中AF=DEBF=CEAB=DC∴△ABF≌△DCE∴∠ABF=∠DCE∵在菱形A

如图,在正方形ABCD中,F为DC的中点,E为BC上一点,且EC=1/4BC.求AF垂直EF.

为了计算简单,设正方形边长为4a,则CF=DF=2a,CE=a,BE=3a∴AF^2=AD^2+DF^2=(4a)^2+(2a)^2=20a^2EF^2=CE^2+CF^2=a^2+(2a)^2=5a

如图,在正方形ABCD中,F为CD的中点,E为BC上一点,且EC=1/4 BC,求证:角EFA=90度

EC:FC=DF:AD=1:2△ECF∽△FDA∠EFC=∠FAD∠EFC+∠AFD=90∴∠EFA=90度