如图正方形abcd边长为a,正方形cefg边长为b
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:41:13
(π(派)-2)/2
“w472”:正方形的面积=a²空白的半圆部份面积=(0.5a)²×3.14÷2=0.3925a²空白的三角形部份面积=a²-a²×3.14÷4=a&
大圆面积=π*(a/√2)²=a²π/2正方形面积=a²小半圆面积=(1/2)*π*(a/2)²=a²π/8∴所求阴影部分面积=4*小半圆面积+正方形
在△AEF和△DHE中,EH=EF∠EAF=∠DAE∠DEH=∠AFE,∴△AEF≌△DHE,∴AF=DE,∵DE+AE=1,∴a+b=1,∵a2+b2=23求解得:a=1+332,b=1−332,∴
如图:由将阴影部分划分为4个全等部分的每个面积=14×(正方形ABCD的面积-正方形DEFG的面积)=316a2,即3个小正方形的面积.
设CD与B'C'的交点为E,连接AE,可知角EAB=60度,则四边形AB'ED的面积为2*1/2*1*1/2=1/2所以阴影的面积为:1*1-1/2=1/2
a=根号8=2·根号2a的相反数为-2·根号2再答:二十年教学经验,专业值得信赖!如果你认可我的回答,敬请及时采纳,在右上角点击“评价”,然后就可以选择“满意,问题已经完美解决”了。再问:计算下列各式
(1)梯形ADGF的面积=12(GF+AD)×GD=12(a+b)•a=a(a+b)2(2)三角形AEF的面积=12×AE•EF=a(b-a)2(3)三角形AFC的面积=S□ABCD+S□AFGD-S
(1)根据题意得:△CDE的面积为12a2;(2)根据题意得:△CDG的面积为12a(b-a)=12ab-12a2;(3)根据题意得:△CGE的面积为12b(b-a)=12b2-12ab;(4)根据题
1、P、Q相遇,说明两点走的路程相加是正方形的周长.即t+4*t=16,t=3.2s2、一次相遇是走过了一个正方形周长,4次相遇就是4个正方形的周长.即(1+a)*16=4*16,a=33、第2013
如图,⑴ E.F是CD,DA的中点,A1D⊥D1D FD⊥D1D A1D,FD共面,∴A1D∥=FDA1D1DF是矩形,A1F∥=D1
s=a平方+b平方-(a+b)*a*0.5-0.5*b平方
分析,设边长为x,∠ABP=y,根据余弦定理,cosy=[(2a)²+x²-a²]/(2*2a*x)=(3a²+x²)/(4ax)siny=cos(π
这样的正方形ABCD有无限多个.(a,b可以取任何实数值!)
解法一延长GF和CD交于HS长方形BCHG=a(a+b)S△HDF=b(a-b)/2S△FGB=b(a+b)/2S△BCD=aa/2S△DBF=S长方形BCHG-S△HDF-S△FGB-S△BCD=a
左边梯形ABCG面积为3/4a^2右边三角形GCE面积1/8a^2三角形ABE面积3/4a^2所以,阴影面积为1/8a^2
设正八边形的边长是a,即MN=ML=LH=a.所以,得DM=LC=a/根号2所以,有:DM+ML+LC=2即:a/根号2+a+a/根号2=2(2+根号2)a=2根号2a=2根号2/(2+根号2)=2/
因为AE平行于CD,所以E到CD的距离等于A到CD的距离,即a所以三角形CDE的面积等于1/2CD乘高,即1/2a*a三角形DEG的面积等于三角形CDE+CDG+CEG的面积和三角行CDG的面积等于1