如图点c为线段bd上一动点分别过点bd做ap垂直于bdd1ed垂直bd
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:51:54
y=6-xC点坐标(2,-2)不是菱形,OP与OB距离不等,如是菱形,应边长相等
(1)因为点C恰好为线段AB上一点,所以MN=MC+NC=12AC+12BC=12(AC+BC)=12AB=5cm;故答案为:5;  
AC+CE的长:√(x^2+1)+√[(8-x)^2+25]2)当A、C、E三点共线时,AC+CE的值最小,所以连接AE,交BD于C'可证三角形ABC'与三角形EDC'全等,则AB:BC'=DE:DC
角BCE=角ACD=120度,BC=AC,CD=CE,三角形BCE和ACD全等,角CBE=角CAD,角AOB=180度-角ABO-角BAO=180度-(角ABC+角CBE)-(角BAC-角CAD)=1
角BCE=角ACD=120所以三角形BCE全等于三角形ACD所以角EBD=角MAD又因为AC=BC角MCB=角ACN=60所以三角形MCB全等于三角形ACN所以CM=CN
相似三角形△ABD相似△MAD(两个角相等)所以BD/AD=AD/MD又M为中点-->BD=2MD代入得出AD*AD=2MD*MD△ADB中AB*AB+AD*AD-2ABADcos60=BD*BD将A
①L=√(1+X²)+√[(8-X)²+5²]②AE为直线时L最小.5/(8-X)=1/X.X=4/3.L=√[(1+5)²+8²]=10③L=√(X
根据勾股定理,CE²=CD²+DE²=x²+2²=x²+4AC²=AB²+BC²=5²+(12-x)
1)AC+CE的长:√(x^2+1)+√[(8-x)^2+25]2)当A、C、E三点共线时,AC+CE的值最小,所以连接AE,交BD于C'可证三角形ABC'与三角形EDC'全等,则AB:BC'=DE:
_______________1)√25+(8-x)²+√x²+12)点C在线段AE上时,即点A、C、E共线时,AC+CE的值最小3)再问:第三问嘞?再答:第三问不会
AC+AE=根号[5^+(8-X)^]+根号[1^+X^]两点之间线段最短不懂联系我
这个明显A、C、E在一条直线上,AC+CE值最小嘛再问:过程能不能详细点再答:把A和E连起来,A、C、E三点就构成了一个三角形,根据三角形定理,两边之和大于第三边,所以只要这三个点不在一条直线上,AC
C在AE直线的中轴线上时满足AC=CE.初中数学书中应该是有该定义的.
(1) (2)当C点在线段BD与线段AE的交点处的时候,AC+CE的值最小.(3)如图:过E点作BD的平行线交AB延长线于F点;由(2)可知代数式的最小值就是线段AE的长在Rt△AFE中,∠
(1)B'(2t+1,0)(2)∵PQ的解析式为x=t∴PC=4-x,∴PQ:2=(4-x):4∴PQ=0.5(4-x)BC=4-(-1)=5当BP=1/2BC时,点B‘与点C重合,故当BP=1/2B
易求得AB=√5,BC=5,AC=2√5所以△ABC与△QPC相似,PQ:AB=PC:ACPQ=(4-t)/2s=1/2(4-t)(4-t)/2=(4-t)²/4
总共有五个符合条件的点,楼主已经写了2个另外3个是(1,0)(3/4,(根3)/4)(3/4,3*(根3)/4)
如图所示:当P移动到C点以及D点时,得出G点移动路线是直线,利用正方形的性质即线段O1O2中点G的运动路径的长就是O2O″的长,∵线段AB=10,AC=BD=2,当P与C重合时,以AP、PB为边向上、
如图所示:当P移动到C点以及D点时,得出G点移动路线是直线,利用正方形的性质即线段O1O2中点G的运动路径的长就是O2O″的长,∵线段AB=10,AC=BD=2,当P与C重合时,以AP、PB为边向上、
如图所示:当P移动到C点以及D点时,得出G点移动路线是直线,利用正方形的性质即线段O1O2中点G的运动路径的长就是O2O″的长,∵线段AB=10,AC=BD=2,当P与C重合时,以AP、PB为边向上、