如图点ef分别在正方形abcd的边bc,cd上,且AF平分角EAD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 14:40:34
∵AB=ADAE=AF∴Rt△ABE≌Rt△ADF(HL)∴BE=DF
提示:延长CB到H,使得BH=DF,连AH.证三角形AEH全等于三角形AFE.
⑴证明:把⊿ABE绕A逆时针旋转90º,到达⊿ADG∵EF=BE+DFFG=FD+BE∴FG=FE又 AE=AGAF=AF∴ΔAFE≌ΔAFG ﹙SSS﹚∴∠FAE=
过H作HN垂直AB于N,过E作EM垂直BC于M,EF交MN于O,四边形EDCM和CHNB是矩形,角EMF=角HNG=90度,EM=CD=BC=HN,EM垂直HN,角FEM=90度角EOH=角GHN,三
连接CB1,AB1CB1//DA1,EF⊥A1D,那么EF⊥CB1,EF⊥AC所以EF⊥ACB1很容易证DD1B⊥AC,则AC⊥BD1,同理AB1⊥BD1,所以BD1⊥ACB1所以EF//BD1
作DQ‖FE,CP‖HG.则DQ‖=FE,CP‖=HG[平行四边形对边],CP⊥DQ.∠DCP=90º-∠CDQ=∠QDA,⊿DCP≌⊿AQD.CP=DQ.EF=GH
证明:平移EF、GH使点F、G分别与C、D重合,设此时EF、GH交于点O.在RT三角形HCD中,因为OC垂直于HD,所以OC平方=OH*OD→OH:OC=OC:OD所以:RT三角形OCH∽RT三角形O
证明,连接AC并取AC中点P,连接EP,PF在三角形SAC中,FP是中位线,所以FP//SA,所以FP//平面SAD又在正方形ABCD中,P是AC中点,所以P也是BD的中点,所以EP也是中位线且EP/
证明:过正方形中点O做E1F1∥EF,G1H1∥GH,点E1、F1、G1、H1分别交于正方形四边(或延长线),则E1F1=EFG1H1=GH∵EF⊥GH∴E1F1⊥G1H1由正方形中心性质可知:E1F
角1+2=3+4又2=3所以角1=4 又有两个九十度然后加上作的EN MG是等于正方形边长的ASA EFN GHM 
(1)证明:∵BE=DF,BC=CD,∠EBC=∠CDF,∴△CEB≌△CFD,∴CE=CF;(2)证明连接AG,CG在Rt△EAF中,∵G是斜边EF的中点,∴AG=GE=GF,又∵△EBC≌△FDC
如图,过点B做EF的平行线交CD于点H,过点A做MN的平行线交BC于点G,AG交BH于点P 易证四边形AGNM、BEFH为平行四边
侧棱SD⊥底面ABCD这一条件多余.证明:在平面SDC内作FG平行于CD,交SD与点G,连接AG;过F作三角形CDS边CD上的高FH,垂足为H,连接EH因为FG平行于CD,且CD平行于AE(已知+正方
如图,过点E作EG⊥BC于点G,过点M作MP⊥CD于点P,设EF与MN相交于点O,MP与EF相交于点Q,∵四边形ABCD是正方形,∴EG=MP,对同学甲的说法:在Rt△EFG和Rt△MNP中,MN=E
c再问:为什么选这个啊???????????再答:不好意思,好像是B自己画图就知道了
取BE中点G,DF中点H,EF中点M连接GM,MH,GH∴MH//=1/2DE,MG//=1/2BF∴异面直线BF,DE所成角是∠GMH的补角设原正方形边长=4∴BF=DE=2√5∴MH=GM=√5∵
将三角形AFD旋转到正方形外
(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2
图你自己画吧,由P向AB,BC,CD,AD作垂线,垂点分别为S,R,Q,T.由定理知,PQ/BC=EQ/EC,PQ/FD=CQ/CD,又因为CD=BC=2FD2EC,EQ=EC-CQ,化简可得4EC=
很简单嘛.连接ab1ab1分别与a1d1和a1b垂直所以ab1与面a1d1b垂直因fe//ab1所以fe与面a1d1b垂直fe属于面def得证