如图空间四边形abcd中ef分别是AB和CD上的点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:03:42
如图.已知四边形ABCD中,EF,GH分别为AB,BC,CD,DA的中点.求证:EFGH为平行四边形.

在△ABC中,因为E.F分别是AB、BC的中点,即EF是△ABC的中位线,所以EF//AC,EF=1/2AC,同理,HG//AC,HG=1/2AC所以EF//HG,EF=HGEFGH为平行四边形

如图,在四边形ABCD中,

不知道说的是哪个角,反正OA=OC(斜边中线等于斜边一半)那么角OAC=角OCA

如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的四边形有(  )

在矩形ABCD中,∵EF∥AB,AB∥DC,∴EF∥DC,则EP∥DH;故∠PED=∠DHP;同理∠DPH=∠PDE;又PD=DP;所以△EPD≌△HDP;则S△EPD=S△HDP;同理,S△GBP=

如图,在空间四边形ABCD中,E,F分别是AD,BC的中点AB=5,DC=3,<向量DC,向量AB>=60度,求EF的长

证:在AC上找一点G,且G为AC中点又因为E,F为AD,BC中点,所以EG=2.5GF=1.5(后面都是向量)因为EF=EG+GF(EG+GF)²=2.5²+1.5²+2

数学难题已知,如图在四边形ABCD中,E,F分别是AB,CD的中点,求证EF

取BC中点M,连接EM、FM在三角形ABC中,EM为中位线,所以EM=1/2*AC同理可得FM=1/2*BD所以EM+FM=1/2*(AC+BD)在三角形EFM中,根三角形三边关系定理可得EF

如图 空间四边形abcd中 e f g分别是

这张图上辅助线已经做出来了啊,由中位线的性质可知,gf//db,ac//ef,平面外的任意一条直线,平行于平面内的任意一条直线就平行于该平面

已知空间四边形ABCD中.

(1)连接AC,BD交于O,再顺次连接EFGH因为E,F是中点所以EF平行且等于二分之一AC(中纬线定理)同理GH等于二分之一AC所以EF平行且等于GH即EFGH是平行四边形(把汉字变成数学符号)(2

如图所示,在空间四边形ABCD中,E,F,G,H分别为AB,BC,CD,DA上的一点,且EFGH为菱形,如AC‖平面EF

因为AC‖平面EFGH,且AC与EF共面所以AC‖EF同理BD‖EH因为AC‖EF所以BE:AB=EF:AC所以BE=AB*EF/AC=AB*EF/m因为BD‖EH所以AE:AB=EH:BD所以AE=

如图,在四边形ABCD中,点E在AB上,EF//BC,FG//CD,求证:EG//BD

证明:因为EF∥BC所以AE/AB=AF/AC因为GF∥CD所以AG/AD=AF/AC则AE/AB=AG/AB∵∠EAG=∠EAG所以△AEG∽△ABD则∠AEG=∠ABD∴EG∥BD如果你认可我的回

如图,四边形ABCD中,

∵∠D=90°∴由勾股定理得:AC²=CD²+AD²∴AC=4∵BC=3,AB=5∴AB²=AC²+BC²∴AC⊥BC∴S△ABC=AC*B

如图,在多面体ABCDEF中,四边形ABCD是正方形,EF//AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=F

EF⊥FB,∠BFC=90°,∴BF⊥面EFCD∠DFC是二面角D-BF-C的平面角.设AB=2,则DC=2FC=√2﹙⊿BFC等腰直角﹚∠DCF=90º∴tan∠DFC=2/√2=√2⑵作

如图 在平矩形ABCD中,EF分别是AB,CD的中点,求四边形AEFD是矩形

因为ABCD为矩形,EF分别是AB,CD的中点所以AE//DF且AE=DF所以AEFD为平心四边形又因为角A=90°所以AEFD为矩形

在线等!高手进来 如图,在多面体ABCDEF中,四边形ABCD是正方形,EF//AB,EF⊥FB,AB=2EF

(I)设AC与BD交于点G,则G为AC的中点.连EG,GH,由于H为BC的中点,故GH‖AB且GH=AB又EF‖AB且EF=AB∴EF‖GH.且EF=GH∴四边形EFHG为平行四边形.∴EG‖FH,而

如图,在四边形ABCD中,BC

分别过A做CD的垂线,交CD于E,做BC的垂线,交BC的延长线于F,得AE=DE=2,AC=4,CE=2√3所以△ACD面积为0.5*AE*CD=2+2√3由AC=4,得AF=2,CF=2√3,又AB

如图,在空间几何体ABCD--EF中,底面ABCD为正方形,EF//AB,EA//EF,AB=2EF,<AED=90.,

看不清图再问:再答:再问:EF//AB再答:��再答:再答:��������

如图,在四边形ABCD中,直线EF经过其对角线的交点 ……

如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,(1)求证:△AOE≌△COF;(2)若AM:DM=2:3,△O

如图,已知在平行四边形ABCD中EF分别是BC、AD的中点,求证:四边形AECF是平行四边形

再问:△ABE≌△DFC()后面括号里填什么再答:边角边定理忘了怎么用字母表示了再问:��SAS��再答:Ӧ���ǵġ���