1 n^3的收敛性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:59:17
再问:谢谢啊!!
发散,与调和级数比较(用比较审敛法的极限形式).[1/n]/[1/(n+1)]的极限是1,因此这两个级数同敛散,而调和级数发散,所以这个级数发散.
发散,用比较判别法的极限形式.经济数学团队帮你解答.请及时评价.谢谢!再问:如果把n^1/2乘进分子又该怎么算?再答:
用根植判别法:lim[(2n+1)/3n-1)^(n/2)]^(1/n)=lim(2n+1)/3n-1)^(1/2)=√(2/3)
比值判别法limn->无穷u(n+1)/un=1/(n+1)!/1/n!=1/n+1=0所以收敛其实这个级数的值就是e
该级数发散,分析如图,
收敛.1到n的平方和是1/6*(n+1)*(2n+1),用整个数列的后一项比上前一项,得到1/3,因为绝对值小于1,所以收敛
一个收,一个发,所以还是发散再问:一个收敛,一个发散,就一定是发散吗?请问有证明之类的过程吗?再答:不一定,你这道前面等比,后面p,容易判断再问:你确定吗?再答:看级数1/n^0.5-2/3^n吧,n
达伦贝尔判别法,结果是e/3再问:可以给我写一下详细的步骤吗?实在是辛苦了,我不太懂。如果能用图画写出来,发图就实在是太太感谢了再答:
利用定义∑ln[n/(n+1)]=∑[lnn-ln(n+1)]=(ln1-ln2)+(ln2-ln3)+(ln3-ln4)+···+[lnn-ln(n+1)]+···当n→+∞时,部分和Sn=(ln1
因原级数是正项级数,使用比值审敛法,当n-->无穷大时,lim(n+1)3^(n+1)/[n/3^n]=1/3
因为1/(ln(n)^n)开n次方=1/(ln(n))它的极限=0再问:他是要求讨论的,应该分情况啊再答:不需要,除非你字母搞错乱了。
解lim(n→∞)【3^(n+1)/(n+1)!】/【(3^n)/(n!)】}=lim(n→∞)【3/n+1】=0
级数收敛的必要条件是通项必须趋于0但是当n趋向无穷时,(2n^2-1)/(3n^2+2)趋于2/3,不是0所以,该级数一定发散
发散,当n→∞时,1/(1+1/n)^n→1/e,不满足级数收敛的必要条件(通项趋于0),故级数发散
sin(n+1/n)π=sin(π+π/n)=-sin(π/n)即只需要判断-sin(π/n)的收敛性而limsinx/x=1【x趋向于0时,在这里就是sin(π/n)与(π/n)的极限是1,即是同阶
(n+1)/n总是大于1那么你可以想像下它的图像应该在y=x的上方那么必然不可能收敛啊只要对于每一项都是正数的多项式在n到正无穷的时候那一项的极限不是0那么肯定不可能收敛
1/(n*(n+1))=1/n-1/(1+n)Sn=1/(1*2)+1/(2*3)+.1/(n*(n+1))=1-1/(1+n)趋于1所以级数收敛且收敛于1