对于数列xn,若x2k-1-a,x2k-a,证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:44:59
这个是数学上严谨的表达.直观简略的说就是xn和a要多接近有多接近,或者说|xn-a|要多小有多小,也就是说不论ε是多小的一个数,只要N(也就是数列的第N个数)足够大,那么|xn-a|都能达到要求的接近
设极限为x则在xn+1=1/2(xn+a/xn)两边令n趋于无穷得x=(x+a/x)/2即得x^2=a又x>0,所以x=根号(a)
跟a有什么关系啊,但是只要a>0,肯定存在当n大于某一数值的时候,xn全大于0bu补充;你对极限的理解有点偏差,如果N时任意正值为a,那么n>N时,1xn-a1的值肯定小于a,而不会是2a,不然,这个
因为lim(Xn+1-Xn)=l根据极限的定义,对于任意ε>0,存在N1>0使n>N1时|Xn+1-Xn-l|N2时|1/n|X1N1使得n>N3时有|1/n|(|(X2-X1-l)|+...+|XN
取N=max{2K1-,2K2}是为了保证│x(2k-1)-a│<ε、│x(2k)-a│<ε两式同时成立,这样才能保证当n>N时,恒有│x(n)-a│<ε再问:为什么n>N时,恒有│x(n)-a│<ε
证明:由已知任取e>0,存在N1,使得2n-1>N1时|x2n-1-a|0,存在N2,使得2n>N2时|x2n-a|max{N1,N2}时|xn-a|a(n->∞)Q.E.D
列{Xn}满足Xn+1=Xn^2+Xn,X1=a(a-1),数列{Yn}满足Yn=1/(Xn+1),设Pn=X/(Xn+1),Sn=Y1+Y2+...+Yn,则aSn+Pn=_1____
证明一:用柯西收敛定理.也就是当K无穷大的时候任意两项可以无限接近.这里可以a是个过度的中间量,先设奇数项为厄普西龙一半,偶数也是,然后合起来用绝对值不等式就可以了.证明二:直接用极限定理.当K去穷大
X1=a>0,Xn+1=1/2(Xn+a/Xn)所以Xn>0由于极限存在且大于0设Xn的极限是A也就是n趋于无穷大Xn=A所以n趋于无穷大时X(n+1)也是A于是A=1/2(A+a/A)解出A=√a极
证明:对∨ε>0,∵lim(x→∞)x(2k-l)=a∴存在自然数N1,当k>N1时|x(2k-l)-a|N2时|x(2k)-a|N3即2k+1>2N3+1,2k>2N3时,|x(2k-l)-a|
X(2k-1)→a(k→∞),所以对任意M>0,有p1>0,使得当|n|=|2k-1|>M时,|X(2k-1)-a|0,有p2>0,使得当|n|=|2k|>M时,|X(2k)-a|0,有p>0,使得当
因为{xn}收敛于a,所以任给ε>0,存在正整数N,当n>N时,|xn-a|
f(1)=4f2=1f3=3f4=5f5=2那么:x0=5x1=f5=2x2=f2=1x3=f1=4x4=f4=5所以:数列以4为周期循环往复,2011除以4余3,所以x2011=x3=4
对于任意的任意小的实数ε,由X(2k-1)的极限是a,存在正整数K1,当k>K1时,|X(2k-1)-a|<ε由X(2k)的极限是a,存在正整数K2,当k>K2时,|X(2k)-a|<ε取正整数N=m
因为Xn收敛于a,即当n—>无穷大时,|Xn-a|-->0或lim|Xn-a|=0由于lim|Xn-a|=lim||Xn|-|a||=0所以|Xn|收敛于|a|反之不成立,1楼已经举例说明了.用逻辑的
由题知lim(n→∞)Xn=a也即:Xn是收敛数列根据定理:收敛数列的任何子列都收敛,且极限相同可知:X(2n)与X(2n+1)都收敛且极限为a这个是最快的证明方法,利用一条定理即可要严格证明也是可以
其实有个很简单的方法.因为x(n+1)=1/2(xn+2/xn)且数列极限存在,所以会有limx(n+1)=lim[1/2(xn+2/xn)]即limx(n+1)=1/2(limxn+2/limxn)
用极限的定义证明:对任意ε>0,存在K1∈N使得k>K1时总有│x(2k-1)-a│<ε对任意ε>0,存在K2∈N使得k>K2时总有│x(2k)-a│<ε取N=max{2K1-,2K2},于是对任意ε
强烈要求加分.这个就是差分方程,关于他的解都有定论Xn+1-根号a=1/2(根号Xn-根号(a/Xn))^2Xn+1+根号a=1/2(根号Xn+根号(a/Xn))^2(Xn+1-根号a)/(Xn+1+