对称矩阵的k种特征值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:41:23
1、证明对称矩阵是正定矩阵的充要条件是它的特征值都是正数!

1.高等代数上有个定理:对于任意一个n级实对称矩阵A都存在一个n级正交矩阵T,使T'AT成对角型,而对角线上的元素就是它的特征根.由此,开证,(1)充分性:当对称矩阵A的特征根都为正数时,对角型矩阵T

对称正定矩阵的特征值问题

前面两个问题是肯定的,后面题目问的是不是有问题,正定矩阵的特征向量?

对称三对角矩阵的性质证明:若一个实对称三对角矩阵有k重特征值,则它至少有k-1个次对角元为0.

首先实对称阵相似于对角阵且特征值为实数只需证明(1)次对角元全非0时所有特征值2,2不同就行了这是因为我们可以把原矩阵分块成一个对角阵和一个实对称三对角矩阵(设阶数分别为s,t)使得这个子阵的的次对角

实对称矩阵相同特征值的特征向量相互正交吗?

特征向量是有时正交有时不正交的.再问:那么什么情况下正交,什么情况下不正交啊,有规律吗?再答:只要是两重以上的特征值,正交和不正交的特征向量都是存在的,任何时候都可以找到正交和不正交的特征向量

证明实对称矩阵的特征值是实数

设A是一个n*n的实对称矩阵,那么AX=aX(这里a是一个复数)那么两边同取共轭,得到conj(AX)=conj(aX)=conj(a)conj(X)因为A是对称的所以conjA=A成立,那么Acon

怎么证明对称矩阵的所有特征值全是实数

说实称矩阵吧给比较初等办吧A称L特征值E应特征向量D表示共轭转置(数比L即共轭)AE=LE(1)则D(E)AE=LD(E)E=L|E|(2)(1)求共轭转置D(E)A=D(L)D(E)则D(E)AE=

关于实对称矩阵的特征值求行列式的问题

n=1的时候最简单n=2的时候取两个对角元一样大的对角阵,用平均值不等式验证这时候达到最大值n>2的时候不存在最大值,因为可以让前三个对角元取成-t,-t,N+2t,余下的元素都是0,这样当t->+o

特征值均为实数的正交矩阵为对称矩阵

要用到两个性质:性质1:正交阵A的特征值λ的模|λ|是等于1的.性质2:如果λ是A特征值,则λ²是A²的特征值.还要用到Jordan标准型的相关知识.就可以证明了.详细见参考资料.

对称正定矩阵的特征值问题3

3.对于对称方阵A(不一定正定)来说,它一定能有n个非负特征值吗?显然不能.比如-E,没有听说过负定矩阵吗?

对称矩阵的特征值在什么情况下等于相似对角矩阵对角线上的值?

线性代数课本上在对称矩阵的对角化那一节有个定理:设A为n阶对称阵,则必有正交阵P,使P^-1AP=P^TAP=^.其中^是以A的n个特征值为对角元的对角阵.所以对陈阵必可以对角化,它的对角矩阵对角线的

对称正定矩阵的特征值问题2

可能不可逆的,对称矩阵又很多的,比如就第一行第一列元素为1,其他元素都为0的三阶方阵,显然是不可逆的

证明 实对称矩阵是正定矩阵的充要条件是它的特征值都是正数

1.高等代数上有个定理:对于任意一个n级实对称矩阵A都存在一个n级正交矩阵T,使T'AT成对角型,而对角线上的元素就是它的特征根.由此,开证,(1)充分性:当对称矩阵A的特征根都为正数时,对角型矩阵T

怎么证明实对称矩阵k重特征值必然有k个特征向量?

http://zhidao.baidu.com/question/517758517.html

实对称矩阵的特征值必为实数

证明:设λ是实对称矩阵A的特征值,α是A的属于特征值λ的特征向量即有A'=A,A共扼=A,Aα=λα,α≠0.考虑(α共扼)'Aα=(α共扼)'A'α=(Aα共扼)'α=((Aα)共扼)'α所以λ(α

为什么对称矩阵为正定矩阵的充要条件是所有的特征值都大于0啊?

实对称矩阵正交相似于对角矩阵即与对角矩阵合同而对角矩阵的主对角线上的元素即A的特征值所以对称矩阵A正定A的特征值都大于0

对称正定矩阵的特征值问题4

对于非对称矩阵A,其特征值可能出现虚数,但不论如何总有μ_min再问:也就是说此时对应的特征向量也有可能是复数域的了?另外,要是只在实数域内求特征值,会出现什么结果啊?再答:一般来讲特征值和特征向量当

怎么证明对称矩阵的所有特征值之和大于等于其最大特征值

对于ATA这样的矩阵才有这个性质,用二次型来证明,不懂再留言吧