对角线之和一定什么四边形面积最大

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:38:41
如果四边形有两条对角线相交于一点,则这个四边形一定是平面图形

对,两条相交直线构成平面.所以对角线构成平面,四个点都在对角线上,所以共面.则这个四边形一定是平面图形.

证明对角线互相垂直的四边形的面积等于对角线乘积的一半

证明:设该四边形为ABCD,AC与BD为互相垂直的对角线,且AC与BD的交点为O.因为AC*BD=(AO+CO)BD=AO*BD+CO*BD=2*[(AO*BD)/2+(CO*BD)/2]又因为三角形

四边形是正方形是两条对角线互相平分的什么条件

充分非必要条件四边形是正方形可以推出两条对角线互相平分而两条对角线互相平分不能推出四边形是正方形所以就是充分非必要条件

圆的内接四边形对角线的乘积等于对边乘积之和

设四边形ABCD内接于⊙O,AC、BD分别是对角线.在AC上取一点E连结BE,且使∠ABE=∠DBC,易得△ABE∽△DBC∴AE/AB=CD/BD,∴AE×BD=AB×CD……(1)又由△ABE∽△

四边形有两条对角线相交于一点,则这个四边形一定是平面图形,对吗,那空间四边形呢

对,空间四边形的对角线是异面的.再问:那还是交于一点啊。==再答:空间四边形的四个顶点不在同一平面内,其对角线不会相交。

证明对角线相等四边形的中点四边形一定是菱形

对角线相等则大四边形为平行四边形.连它的两对角线把大四边形分成两个全等的三角形,因为都是中点所以小四边形每边都是对应三角形的中位线,这样易证小四边形是平行四边形,又对角线相等,AC=BD,所以1/2A

正方形ABCD的面积为9,三角形ABE是正三角形,点E在四边形ABCD内,在对角线AC上有一点P,使PD+PE最...

∵正方形ABCD的面积为9,∴AB=3,∵△ABE是等边三角形,∴AB=BE=3,∵四边形ABCD是正方形,∴点B即为点D关于AC的对称点,∴BE即为PD+PE的最小值,∴PD+PE的最小值为:3

如图,过四边形ABCD的各顶点作对角线BD,AC的平行线围成四边形EFGH,若四边形EFGH是菱形,则原四边形一定是(

填:对角线相等的四边形根据平行四边形的判定,可得四边形EFGH是平行四边形,又知它是菱形,则AC=BD所以只能推出一定是对角线相等的四边形

求证:顺次连接任意四边形各边中点得到的四边形为平行四边形,其周长等于原四边形的对角线之和

连接原来四边形的一条对角线根据三角形中位线定理,可以得到新得到的四边形的一组对边和这条对角线平行,且等于它的一半,所以这组对边平行且相等,从而得到这是平行四边形.再连接另一条对角线,同样得到另一组对边

在四边形中对角线垂直个边中点形成的四边形面积?

证明:设该四边形为ABCD,则E、F、G、H为DA、AB、BC、CD上的中点,连EH、HG、GF、FE,因为E、H为DA、DC边上的中点,所以在△DAC中EH//AC同理得FG//AC、EF//DB、

四边形的两条对角线一定相交于一点吗

高中范围,四边形有:平面中,凸四边形和凹四边形,如楼上答,凹四边形的不相交三维空间,立体四边形,就是把平面四边形沿着一条对角线,折上来,或者折下去,使其在另一个面,此时,两对角线,不但不相交,而且异面

求证:任何四边形,只要对角线互相垂直,其面积就等于对角线乘积的一半!

证明:设四边形为ABCD,AC⊥BD于点O则S四边形ABCD=S△ABC+S△ADC∴S四边形ABCD=1/2AC*BO+1/2AC*DO=1/2AC(BO+DO)=1/2AC*BD即其面积等于对角线

证明题:四边形ABCD中,对角线AC,BD都恰好平分这个四边形的面积,则这个四边形是平行四边形

设对角线AC,BD交于点O.由已知得△ABC=△ADC=△ABD=△CBD(这里以△表示三角形的面积)即△AOB+△BOC=△AOD+△COD=△AOB+△AOD=△BOC+△COD所以△AOB=△C

证明圆内接任意四边形对边乘积之和等于对角线的乘积

如图,四边形ABCD内接于圆O,那么AB*CD+AD*BC=AC*BD证明:作∠BAE=∠CAD,交BD于点E∵∠ABE=∠ACD,∠BAE=∠CAD∴△ABE∽△ACD∴AB/AC=BE/CD∴AB

如何推导对角线互相垂直的四边形面积等于对角线乘积的一半

证明:四边形ABCD对角线AC⊥BD,AC和BD相交于点OS四边形=S△ADB+S△CDB=BD×AO÷2+BD×CO÷2=BD×(AO+CO)÷2=BD×AC÷2=对角线乘积的一半命题得证

四边形面积等于对角线乘积的一半怎么证明

你这个对角线是不是垂直的啊?再问:对角线不垂直再答:不垂直就不是了,比如一个长方形变长为3和4那么对角线长就为55*5=2525/2=12.5,而长方形的面积为12,明显不等了

为什么任意对角线垂直的四边形面积可以用对角线乘积的一半来求

设该四边形为ABCD,AC与BD为互相垂直的对角线,且AC与BD的交点为O.因为AC*BD=(AO+CO)BD=AO*BD+CO*BD=2*[(AO*BD)/2+(CO*BD)/2]又因为三角形ABD