将下列函数展开成x-1的幂级数并求其收敛区间

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:03:44
将下列两个函数展开成x的幂级数,并指出收敛区间.如图所示

这句话我写在前面:通过两题,我们需要得到的是,求幂级数表示,可以转换成求其导数或者积分的幂级数,再求秋分或导数;即幂级数的导数还是幂级数,幂级数的积分还是幂级数!而且幂级数的求积分求导,这个也是我们所

将函数展开为幂级数将函数f(x)=1/(x²+x-2)展开成X的幂级数

f(x)=1/(x+2)(x-1)=1/3[1/(x-1)-1/(x+2)]=-1/3[1/(1-x)+0.5/(1+0.5x)]=-1/3[1+x+x^2+.+0.5(1-0.5x+0.5^2x^2

将函数f(x)=1/(x^2+3x+2)展开成x的幂级数

f(x)=1/(x^2+3x+2)=1/(x+1)-1/(x+2)=1/(x+1)-(1/2)/(1+x/2)=∑(n=0,+∞)(-x)^n-(1/2)∑(n=0,+∞)(-x/2)^n|x|

将函数 f(x)=1/(x+2) 展开成 x-3 的幂级数

f(x)=1/(x+2)=1/[5+(x-3)]=(1/5){1/[1+(x-3)/5]}=(1/5)∑(n=0~∞)[-(x-3)/5]^n

将函数f(x)=1/x展开成(x-1)的幂级数,求收敛区间

f(x)=1/x=1/[1+(x-1)]=Σ(n从0到∞)(-1)^n*(x-1)^n收敛区间:|x-1|

将函数f(x)=1/(x+1)展开成(x-2)的幂级数

1/(x+1)=1/(3+x-2)=(1/3)/[1+(x-2)/3)]=(1/3)∑(0,+∞)(-1)^n[(x-2)/3)]^n|x-2|

求将函数f(x)=1/(2-3x+x)展开成x的幂级数?

f(x)=1/(x-2)(x-1)=1/(x-2)-1/(x-1)=1/2(1-x/2)+1/(1-x)=1/2∑(x/2)n+∑xn∑上面是无穷大,下面是n=0X范围为(-1,1)

将函数f(x)=1/x^2展开成(x+1)的幂级数

就讲一下思路了.(1)首先把f(X)=1/x^2看成是g(x)=-1/x的导数,也就是f(x)=g'(x).(2)将g(x)展开成x+1的幂级数.g(x)=-1/x=1/(1-(x+1))这样就可以把

将函数sinx展开成x的幂级数,

X-x^3/3!+x^5/5!-……再问:幂级数的展开式好难,我连最基本的e^x,sinx都展不来,有什么技巧吗?

将函数f(x)=1/1+2x展开成关于x的幂级数

为什么没有人回答呢,太简单了吗?根据等比数列公式,1/(1+2x)=1/(1-(-2x))=1+(-2x)+(-2x)^2+(-2x)^3+...+(-2x)^(n-1)+...,这是因为等比数列前n

将下列函数展开成x的幂级数

(arctanx)'=1/(1+x^2)=∑(-1)^n*x^(2n),-1<x<1.arctanx=∑(-1)^n*x^(2n+1)/(2n+1),-1≤x≤1.xarctanx=∑(-1)^n*x

将以下函数展开成x的幂级数

套用已知的展开公式.经济数学团队帮你解答.请及时评价.

将函数如图展开成x的幂级数

将f(x)的导函数展开,再逐项积分即可到其展开式再问:那2sinxcosx怎么展开呢?再答:那不就是sin2x吗?

将函数展开成x的幂级数

f(x)=(1-x)/(1-x)(1+x+x^2)(1-x)*[x^3+x^6+...+x^3n+...)]

将函数1/(2-x)展开成x的幂级数

解题过程请看附图.

将函数f(x)=1/(x+2)展开成x-1的幂级数.

经济数学团队帮你解答,有不清楚请追问.满意的话,请及时评价.谢谢!

将函数X/(1+X^2)^1/2展开成X的幂级数

套用一个结果:(1+x)^m=1+mx+m(m-1)2/2!×x^2+...,-1≤1x≤1(m是个正数)把m换作1/2,x换作x^2,得到√(1+x^2)的幂级数展开式,再求导就是了