7年级RT三角形ABC全等RT三角形BEF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:40:50
在Rt三角形ABC中,求CD

 再问:好像不对再答:嗯再答:过程没错,答案错了,是7╱8再问:可是没有这个选项再答:选择题?再答:把题目全拍过来,快点再问: 再问: 再答:难怪!角c多少度?再问:90

求讲解 在Rt三角形abc中

(如图)将△ABC绕C点顺时针旋转90°,到达△AB'C的位置则∠B'CQ=∠ACP      且CQ=CP=1 

已知Rt△ABC在坐标系中的位置如图所示,请写出与Rt 三角形全等且只有1条公共边所有Rt三角形的第三个顶点标

AC为公共边:B1(-1,3)B2(-3,-3)B3(-1,-3)BC为公共边:A1(-5,0)A2(-1,3)A3(-5,3)AB为公共边:C1(-1,3)C2(-3/13,24/13)C3(-49

已知Rt△ABC在坐标系中的位置如图所示,请写出与Rt 三角形全等且只有1条公共边所有Rt三角形的第三个顶点标.

(-1,-2)(-2,-2)(-5,0)(-6,3)(-6,2)(-6,1)(-6,0)(-3,-3)(-2,-3).斜边不好算,题目有木有错,我画了n种,还有.

如图,RT三角形ABC中,

如图,过A做线段AM,使得AM=AB=AC,且角DAM=角DAC,则角EAM=角EAB,三角形ABE与三角形AME全等,三角形AMD与三角形ACD全等.从而角AMD=角ACD=45°,同理角AME=4

如图,已知RT△ABC全等于三角形EFD,且∠ACB=∠EDF=90° (1)将RT△ABC和RT△EFD如图1拜访,使

(1)延长BA与EF交与m∵RT△ABC全等于三角形EFD∴∠1=∠2又∵∠2+∠3=90°,∠3=∠4∴∠1+∠4=90°=∠5∴BA⊥EF(2)交于M∵RT△ABC全等于三角形EFD∴∠1=∠2又

一道全等三角形证明题rt

D向AB作条垂直线.设交叉点为E你可以证明出DE=CDAE=AC∠EDB=∠A=∠B所以ED=EB=CDAC+CD=AE+EB=AB

Rt三角形ABC和RT三角形DEF

你那个ABC和DEF的位置关系如何?这俩三角形都是任意的RT三角形吗?

已知Rt三角形ABC全等于Rt三角形ADE,角ABC=角ADE=90度,BC与DE相交与点F,连接CD,EB

△ADC≌△ABE,△CDF≌△EBF;证明:∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD,∴∠CAB-∠DAB=∠EAD-∠DAB.即∠CAD=∠EAB.∴△ADC≌△

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

数学如图在RT三角形ABC

过C作CD⊥AB,D为垂足∵MN⊥AB∴CD//MN∴∠DCN=∠N∵CN平分∠ACB∴∠ACM+∠MCN=∠ACN=∠BCN=∠DCN+∠BCD∵CM是斜边AB上的中线∴AM=BM=CM∴∠A=∠A

在rt三角形abc中 

C再问:��ô��再答:��BC=1��AC=2��AB�͵��ڸ��5�ˣ�sinA�͵���1/���5�ˡ�再问:�����Ҿ�Ȼ�ܵ���再问:лл

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

全等三角形练习题1.已知:如图,在Rt三角形ABC和Rt三角形BAD中,AB为斜边,AC=BD,BC、AD 相交于点E.

(1)在三角形ACB与三角形BDA中AC=BD角CAB=角DBAAB=BA所以三角形ACB全等于三角形BDA.(SAS)所以角ABC=角DAB.因为角CAB=角CAD+角DAB角DBA=角DBE+角E

在RT三角形ABC中

已知,CM是Rt△ABC斜边上的中线,(题中应该是∠A小于∠B)可得:CM=AM,所以,∠ACM=∠BAC.∠BCD=90°-∠B=∠BAC=∠ACM=∠DCM.因为,∠BCD+∠ACM+∠DCM=9

在RT三角形ABC中,

a+b=4ab=2a^2+b^2=(a+b)^2-2ab=12=斜边的平方RT三角形ABC的外接圆的半径就是斜边的一半所以为根号3

怎么证明三角形ABC是RT三角形

假如小正方形边长是1,分别算出AB和BC及AC的边长,你会发现AB^2+BC^2=AC^2则可以得出此三角形为直角三角形

己知Rt三角形ABC中

在△ADC与△ABF中:∠DCA=∠BFA(因为BE垂直于DC,AF垂直于AC,故AFEC四点共圆)∠DAC=90°-∠BCA=∠BAF又AD=AB∴△ADC全等于△ABF∴AC=AF又∠CAF=90

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的