已知 如图 ABC内接于 O ,点A B C把 O 三等分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 06:15:02
(1)证明:∵C是AD的中点,∴AC=CD,∴∠CAD=∠ABC∵AB是⊙O的直径,∴∠ACB=90°.∴∠CAD+∠AQC=90°,∵CE⊥AB,∴∠ABC+∠PCQ=90°,∴∠AQC=∠PCQ∴
(1)证明:∵C是AD的中点,∴AC=CD,∴∠CAD=∠ABC∵AB是⊙O的直径,∴∠ACB=90°.∴∠CAD+∠AQC=90°又CE⊥AB,∴∠ABC+∠PCQ=90°∴∠AQC=∠PCQ∴在△
1.连接OD因为三角形ABC是直角三角形(不知道你学过没.连接OB,OB等于OC等于OA等于1/2AC所以是直角三角形.直角三角形斜边中线等于斜边一半的逆定律)所以AB平行于EF因为D为弧AB中点所以
连接CO,并延长交圆于D点,连接AD和AO.得出CD为圆的直径,∠OAC=∠OCA,∠B=∠ADC因为CD为直径,所以∠ADC+∠OCA=90°.又因为∠B=∠CAE,∠B=∠ADC,∠OAC=∠OC
(1)设AH垂直BC于点H,则AH是BC的垂直平分线,所以由OB=OC可知O在AH上又OH垂直BC,BC平行PA,所以OH垂直PA,A又是与圆的交点所以A一定是切点,PA是切线(2)利用△ABC就能求
连AD∠CAD=∠CBD=∠ABD∠ADB=90所以有三角形ABD相似于三角形AFDAB/AF=AD/DF=10/7.5=4/3tan∠ABF=tan∠FAD=3/4
其实这个好做,利用相似把分母化为一样的:第一题和第二题是一样的做我只做第一题,第二题留给你练手;因为:(相似我就不证明了,我直接说)GF/AC=0F/BC=BH/BCPE/AB=0E/BC=QC/BC
(1)证明:∵AB是⊙O的直径∴∠ADB=∠ACB=90°∵DE⊥AB∴∠DEA=90°∴∠ADE=∠ABD(都是∠DAE的余角)∵∠DAC=∠DBC(同弧所对的圆周角相等)∠DBC=∠ABD(BD平
图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠
(1)∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠D
B再问:为什么选B,详细过程,非常感谢再答:连接BO,AB,有垂径定理的,∠MOB=1/2∠AOB,因为∠C=1/2∠AOB,所以,∠C=∠MOB,因为∠C与∠CBD互余,∠MOB与∠MBO互余,所以
(1)证明:∵AB为直径,∴∠ACB=∠ADB=90°∵BD平分∠ABC∴∠CBF=∠FBA∵∠DAF+∠AFD=90°∠CBF+∠BFC=90°∠AFD=∠BFC(对顶角相等)∴∠DAF=∠CBF=
ED=DF(角平分线定理)因为,∠1=∠2,所以弧BD=弧DC(等圆周角对等弧),所以BD=BC(等弧对等边)所以三角形EBD、DCF全等,所以BE=CF
∵∠ACB=90°(直径对直角)∵CD是角平分线∴∠FCB=∠FCA=45°∵AE垂直CD于H∴∠CAH=45°∴∠CAH=∠FCB又∵∠B=∠E(同弦对等角)∴三角形ACE相似于三角形CFB
中垂线交于点O,所以AO=BO=CO,∠OAB=∠OBA,∠OCA=∠OAC;所以∠AOB+∠AOC=(180°-∠OAB-∠OBA)+(180°-∠OAC-∠OCA)=(180°-2∠OAB)+((
证明:连接AF,∵BF=AC,∴弧AB+弧AF=弧AF+弧CF.∴弧AB=弧CF.∴∠F=∠FBC.又∵∠CAM=∠CBM,∴∠F=∠MAN.∵∠AMF=∠NMA,∴△AMF∽△NMA.∴AM/NM=
证明:连接AD,BD因为DC平分∠ACB所以∠ACD=∠BCD所以弧AD=弧BD所以点D是弧ADB的中点连接OD,根据垂径定理OD⊥AB因为L是切线所以OD⊥L所以AB‖L(同垂直于一条直线的2条直线
连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠
1个用45度角可以证,第二个OH=1再问:请问,是怎么证明第二问的,能给个提示吗再答:延长CB与AE相交然后利用等边直角三角形可以求,不懂可以再问我哈
(1)证明:∵连接CD,在⊙O中,∵∠ABC=∠ADC,∠1=∠3,∴△ABE∽△CDE,∴AECE=BEDE∵AE•DE=BE•CE; &n