作业帮 > 数学 > 作业

已知:如图,△ABC内接于⊙O,AB为直径,弦CF⊥AB于E,C是AD的中点,连接BD,连接AD,分别交CE、BC于点P

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 12:44:34
已知:如图,△ABC内接于⊙O,AB为直径,弦CF⊥AB于E,C是
AD
(1)证明:∵C是

AD的中点,


AC=

CD,
∴∠CAD=∠ABC
∵AB是⊙O的直径,
∴∠ACB=90°.
∴∠CAD+∠AQC=90°,
∵CE⊥AB,
∴∠ABC+∠PCQ=90°,
∴∠AQC=∠PCQ
∴在△PCQ中,PC=PQ,
∵CE⊥AB,


AC=

AF


AF=

CD
∴∠CAD=∠ACE.
∴在△APC中,PA=PC,
∴PA=PC=PQ
∴P是AQ的中点.
(2)∵CE⊥AB于E,
∴在Rt△BCE中,由tan∠ABC=
CE
BE=
3
4,
∵CF=8,
∴CE=4,
得:BE=
4
3CE=
16
3,
∴由勾股定理,得BC=
CE2+BE2=
20
3,
∵AB是⊙O的直径,
∴在Rt△ACB中,由tan∠ABC=
AC
BC=
3
4,BC=
20
3,
得AC=
3
4BC=5.
∵AB为直径,∠CBA=∠CAQ,
∴Rt△ACB∽Rt△QCA,
∴AC2=CQ•BC
∴CQ=
AC2
BC=
15
4.
已知:如图,△ABC内接于⊙O,AB为直径,弦CF⊥AB于E,C是AD的中点,连接BD,连接AD,分别交CE、BC于点P 已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是AD的中点,连接BD并延长交EC的延长线于点G,连接A 已知△ABC内接于圆O,AB为直径,弦CE⊥AB,C是弧AD的中点,连接BD并延长交EC的延长线于点G,连接AD,分别交 已知:如图1,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,连接PC,交AD于点E. 如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为弧AD的中点,连接CE交AB于点F,且BF=BC. 如图,已知AB是⊙O的直径,过⊙O上的点C的切线交AB的延长线于E,AD⊥EC于D且交⊙O于F.连接BC,CF,AC. 已知如图1三角形ABC中,AB=AC,点D是边BC中点,以BD为直角作圆O,交边AB于点P,连接PC交于AD于点E 已知,如图,AB是⊙O的直径,AD是弦,C是弧AB的中点,连接BC并延长与AD的延长线相交于点P,BE⊥DC,垂足为E, 如图,△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE的中点,如果BD∥CF,BC=25,则线段CD的长 关于三点共线与圆如图,已知在△ABC中,AD⊥BC.以AD为直径的圆O分别交AB于E、AC于F.连接BF、CE交于点I; 如图已知c是以AB为直径的半圆O上,CF⊥AB于点F,直线AC与过B点的切线相交于点D,E是BD的中点,连接AE交CF于 如图,△ABC是⊙O的内接三角形且AB=AC,BD是⊙O的直径.过点A做AP‖BC交DB的延长线于点P,连接AD.