已知(X,Y,Z)的联合概率密度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 22:53:34
先算出g1,g2关于x,y的雅克比行列式J(x,y)则f(z1,z2)=f(x1,x2)÷|J(x,y)|当然你还要把右边的x,y用z1,z2表示出来这就是结果了~你可以参考帕普里斯的概率统计与随即过
1)a{∫(0~)e^(-x)dx}{∫(0~)e^(-y)dy}=1a*1*1=1a=12)F(x,y)=∫(0~x)∫(0~y)e^(-u+t)dudt=(1-e^(-x))(1-e^(-y))(
思路:1.求概率密度的问题,首先要想到要通过求分布函数来解.2.分布函数F(z)=P(Z
5题:f(x,y)=ke^(-y),00.f(y)=∫[0,y]e^(-y)dx=ye^(-y),y>0.(4)f(x|y)=f(x,y)/f(y)=1/y,0再问:第5题的(6)(7)题,麻烦你了,
是的,就是这样求的.再问:还可以二重积分那样求呢再答:二重积分求也是类似于‘先求出X的边缘概率密度,然后按照一维随机变量计算期望’只不过二重积分把‘先求出X的边缘概率密度,然后按照一维随机变量计算期望
再问:额,第一题的积分公式是什么?再问:什么时候可以把指数放在前面?负的指数能放前面吗?就是像x^2的积分是1/3x^3,我好像一直用错公式了。再问:我再想想再问:我好像知道了。。。我再看看再问:第三
∫∫f(x,y)dxdy=∫kxdx(0-->1)∫dy(0--->x)=∫kx^2dx(0-->1)=k/3=1--->k=3X的边缘概率密度fX(x)=∫3xdy(0-->x)=3x^2Y的边缘概
再问:主要就是这个上下限不明白,为什么不是0到1再答:画个图,只计算下三角形区域,如果是0,1则算的是整个矩形
(1)∫∫(-∞,+∞)f(x,y)dxdy=k/3=1k=3(2)fX(x)=∫(-∞,+∞)f(x,y)dy=3x²,0
对f(x,y)求积分上下限都是0-1,这个积极结果=1求出c*1/2*1/3=1/6c=1c=6.(2)前面的积分结果中把上下限换成0-0.5,此时c=6,求值.(3)当0
fx(x)=∫(0~1/Γ3)24xydy=12xy²](0~1/Γ3)=4xP(x
如果是求P{Z>=z}=P{X+Y>=z},则在上方,反之在下方.
P{X=-1,Y=1}=P﹙X=-1﹚×P﹙Y=1/X=-1﹚=1/3×1=1/3[这里假定X是等可能取值,∴P﹙X=-1﹚=1/3又已知P{X^2=Y^2}=1.∴X=-1时Y=1的概率=1即P﹙Y
U(0,1),fY(y)=1,(0
直接看图.再答:再答:
再问:最后一题,X、Y是否相关?请问该怎么做?答案是线性相关。
你用他们两个的范围表示出x和z的关系,也就是说在以z为横轴,x为纵轴的坐标系中画出区域,最后对x求积分就可以利用∫f(x,z-x)dx,上下线是x的范围,使用z表示的,这样求出来的就是结果,但要注意z