已知,在三角形ABC中,角c=90度,CD垂直AB于点D角B=60度,BD=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 15:38:30
在三角形abc中,已知a/COSA=B/COSB=C/COSC 则三角形abc是什么三角形?

a/cosA=b/cosB即acosB=bcosA代进正弦定理得sinAcosB=sinBcosAsinAcosB-sinBcosA=0sin(A-B)=0所以A=B同理B=C所以A=B=C为等边三角

在三角形ABC中,已知c=2a cosB,怎么判断三角形ABC的形状

化为c/a=2cosB又c/a=sinC/sinA所以sinC=2sinAcosB因为A+B+C=180sinC=sin(A+B)=sinAcosB+sinBcosA于是sinAcosB=sinBco

在三角形ABC中,已知b.cosC=c.cosB判断三角形ABC的形状

由正弦定理,b/sinB=c/sinC得b=sinB·c/sinC代入原式得cosC·sinB·c/sinC=c·cosBsinB·cosC=sinC·cosBsinB·cosC-sinC·cosB=

在三角形ABC中已知a2+b2=c2+ab求角C大小

移项a²+b²-c²=ab所以cosC=(a²+b²-c²)/2ab=ab/2ab=1/2C=60度

在三角形ABC中,已知tanA tanB tanAtanB=1,求角C的度数

tanC=tan(派-A-B)=-tan(A+B)=-(tanA+tanB)/(1-tanAtanB)=-1所以C=135度

在三角形ABC中,已知tanB/tanC=(2a-c)/c,求角B

由正弦定理有a/c=sinA/sinC因为(2a-C)/C=tanB/tanC所以2a/c-1=tanB/tanC2sinA/sinC-1=sinBcosC/cosBsinC2sinAcosB-cos

在三角形ABC中,已知b=c cosA,c=2a cosB,试判断三角形ABC的形状.

=ccosA,2b^2=b^2+c^2-a^2c^2=b^2+a^2,直角三角形c=2acosB=2asinAa/c=sinA,c=2a*(a/c)c=√2a,A=B=45°,等腰直角三角形

在三角形ABC中,已知tanA-tanB/tanA+tanB=c-b/c.求角A.

LZ,∠A=60度.\x0d\x0d(tanA-tanB)/(tanA+tanB)=1-2tanB/(tanA+tanB)\x0d(c-b)/c=1-b/c\x0d由已知可得,\x0d2tanB/(t

在三角形ABC中,已知tanA/tanB=2c-b/b,求角A

tanA/tanB=sinAcosB/sinBcosAc=2RsinCb=2RsinB所以2x2RsinC-2RsinB/2RsinB=2sinC-sinB/sinB所以sinAcosB/sinBco

在三角形ABC中,已知b=asinC,c=acosB,则三角形一定是什么三角形

等腰直角三角形显然sinC≤1,cosB≤1,所以b≤a,c≤a由a/sinA=b/sinB=c/sinC得sinB=sinAsinC,sinC=sinAcosB,所以(sinB)^2=(sinAsi

在三角形ABC中 已知sin2Asin2B=3/4 tanAtanB=3 求角C

sin2Asin2B=3/4得到2sinAcosA*2sinBcosB=3/4.1tanAtanB=3得到sinAsinB=3cosAcosB.2由1.2解得,sinAsinB=3/4,cosAcos

在三角形ABC中,已知2SIN A * COS B =SIN C,那么三角形ABC是什么三角形?

2sinAcosB=sin(A+B)+sin(A-B)=sinC+sin(A-B)=sinC所以sin(A-B)=0所以A=B所以,△ABC是等腰三角形.完毕.

在三角形abc中,已知a=7,b=5,c=3,则三角形abc是什么三角形

3平方+5平方小于7平方,钝角,其实可以求出a的对角A,因为c2=a2+b2-2bc*cosA,因为cosA为负数,则A为钝角,怕你没学过三角函数,你就根据7大于边长3,5的直角三角形斜边长来判断他是

已知;如图,在三角形abc中,角c=90度,求证,点abc在同一个圆上

取AB中点E,连接EC∵E为AB中点且△ABC为直角三角形∴AE=BE=1/2AB,CE=1/2AB(直角三角形斜边上的中线等于斜边的一半)∴AE=BE=CE∴A,B,C三点在以E为圆心的圆上

已知:如图,在三角形abc中,角c=90度,ab的垂直平分线

已知:如图,在三角形ABCc中,∠C=90度,AB的垂直平分线交BCc于D,如果∠CAD:∠DAB=1:2,求∠B的度数∵DE垂直平分AB∴∠B=∠DAB∵∠CAD:∠DAB=1:2∠CAD+∠DAB

已知:在三角形ABC中,角C=90度,CD是斜边AB上的高.求证:三角形ACD相似于三角形CBD相似于三角形ABC

角A=角A=角DCB,角ACB=角ADC=角BDC,三角形ACD和ABC相似,三角形ACD和CBD相似,三角形ACD相似于三角形CBD相似于三角形ABC

在三角形ABC中,角ABC对应边abc,已知cos(C/2)=√5/3 ,若acosB+bcosA=2,求三角形ABC面

已知cos(C/2)=√5/3cosC=2[cos(C/2)]²-1=2*5/9-1=1/9sinC=√(1-cos²C)=4√5/9由余弦定理acosB+bcosA=a*(a&#