已知,如图,D是三角形ABC的BC边的中点,DE垂直于AC于点E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:23:32
已知,如图在三角形abc中,点D在bc边上,BE//CF,且be=cf.是说明ad是三角形abc的中线

∵BE∥CF,∴∠GBE=∠DCF,∠E=∠DEC,∵BE=CF,∴ΔDBE≌ΔDCF,∴BD=CD,∴AD中ΔABC的中线.

如图,曰D=3AD,CE=4AE,已知三角形ADE的面积是9平方厘米,求三角形ABC的面积

ADE面积=1/2AD*AE*sinA=9AB=4ADAC=5AE所以ABC面积=1/2AB*AC*sinA=9*4*5=180再问:能不能用易懂的话来说啊我是小学生啊再答:把各个点都标上名字&nbs

如图,在三角形ABC中,已知AB=AC,D为BC的中点,则三角形ABD全等于三角形ACD根据是

AB=ACD为中点∴AD为△ABC的中垂线AB=ACAD=ADBD=CD△ABD≌△ACD

如图,已知三角形ABC是等腰三角形,角ABC等于90度,AB等于10,D为三角形ABC外一点,连接AD,BD,过D做DH

DE=DH-EH,由于EH平行于BC,所以AEH相似于ABC,且由于AH=1/2AB,所以EH=1/2BC=1/2AB=5,又ADB是等边三角形,所以AH=5,AD=10,DH=5倍根号3,所以DE=

已知:如图在三角形ABC中,角ACB=90度,AC=BC,D是AB的中点

(1)连接CD,因为等腰RT△ABC,D是斜边AB中点,所以CD=AD=BD=1/2ABCD⊥AB所以∠A=∠ACD=45°又因为AE=CF所以△ADE≌△CDF(SAS)所以DE=DF(2)因为△A

已知:如图,三角形ABC是等边三角形,点D,E,F分别是边AB,BC,CA的中点.:三角形DEF是等边三角形

∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF

如图,已知三角形ABC及三角形ABC外一点B,平移三角形ABC,是点A移动到点D,并保留作图痕迹

1.用虚线链接AD连点2.以B点为顶点,用虚线向右做AD的平行线BB',且让BB'=AD3.以C点为顶点,用虚线向右做AD的平行线CC',且让CC'=AD4.用实线依次连接点D,B',C'即可

如图三角形ABC中,D是BC的中点,AC=3EC.已知三角形CDE的面积是6平方厘米.那么三角形的面积是多少?

你是要求三角形ABC的面积吧!设:bc=x,ad=y在e点做ef垂直于bc得出:ef=1/3ad=1/3y,cd=1/2bc=1/2x因为:Scde=1/2*1/3y*1/2x=6得出:xy=72Sa

如图已知三角形abc中,d,e分别是ab,ac,的中点,BE=6,CD=4,BE垂直DC,求三角形abc的面积

根据D284E是中点可知DE是三角形ABC的中位线rjlq所以nrv三角形ADE的面积=1/4三角形ABC的面积.故梯形BDCE的面积=3/4三角形ABC的面积梯形BDCE的面积=三角

如图,已知点D、E分别在三角形ABC的边AB、AC上.

(1)DE平行于BC,三角形ABC相似于三角形ADE由于△ADE和△BDE底分别为AD和DB,两三角形高相同,所以面积比等于两个底之比即S△ADE/S△BDE=AD/DB.设三角形BDE的面积为x.可

如图,已知Rt三角形ABC内接于圆o,AC是圆o直径,D是弧AB的中点,过D作BC的垂线,

解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.

已知,如图CE是三角形ABC的外角

证明:∵CE是∠ACD的平分线∴∠ACE=∠ECD∠ECD是△BCE的外角∴∠ECD=∠E+∠EBC∴∠ECD>∠EBC∴∠ACE>∠EBC即:∠EBC<∠ACE

已知,如图,AD,A'D'分别是三角形ABC和三角形A'B'C'的高,AB=A'B',AD=A'D

AD,A'D'分别是三角形ABC和三角形A'B'C'的高,所以角ADB=角A'D'B'AB=A'B',AD=AD,所以三角形ADB全等于三角形A'D'B',所以角ABC=角A'B'C'AB=A'B',

​如图,已知△ABC是⊙O的内接三角形,AB=AC,D是圆上任意

射线是角平分线再问:图1,为什么是连接DA再答:因为弧AB和弧AC相等,所以所应角相等

已知:如图,在三角形ABC中,点D在边BC上,BE平行于CF,求证;AD是三角形ABC的中线

∵BE∥CF∴∠E=∠CFD,∠EBD=∠FCD∵BE=CF∴△BDE≌△CDF(ASA)∴BD=DC∴AD是△ABC的BC边上的中线

已知;如图;在三角形ABC中,D是BC的中点,E是AD的中点,F是BE延长线与AC交点,DG是三角形BCF

证明:1.证明AF=1/2FC在△BCF中∵DG为中位线∴CG=FGBF∥DG在△ADG中∵EF∥DG∴AF:FG=AE:ED∵E是AD中点∴AE=ED∴AF=FG∴AF=FG=CG∴AF=1/2FC

已知如图.D,E分别是AB,AC边的中点求证△ADE∽三角形ABC

帮你找到原题了,真的一模一样http://www.qiujieda.com/math/167482/以后遇到初中数理化难题都可以来这个网站搜搜寻找思路,题库超大,没有原题也有同类题,界面很科学哦,也可

已知如图CD是三角形ABC的高,D在AB上,且CD^2=AD*DB,求三角形ABC是直角三角形求大神帮助

根据勾股定理:AC^2=AD^2+CD^2BC^2=CD^2+DB^2所以:AC^2+BC^2=2CD^2+AD^2+DB^2=2AD*DB+AD^2+DB^2=(AD+DB)^2=AB^2即是三角形