已知,如图1所示,在△ABC 和△ADE中,AB=AC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:30:52
证明:∵在△ABC和△DEF中,AB=DE,AC=DF,∠A=∠D(已知)∴△ABC≌△DEF(三角形全等定理.边角边)
探索,在图1至图3中,已知△ABC的面积为a.50-解决时间:2010-8-2819:15(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD得面积为S1,则S1=______
你想问啥,话说也没看见你的图
P点在△ABC内部时,BQ=CP成立,这个非常简单∵∠QAP=∠BAC又:∠QAB=∠QAP-∠BAP,∠PAC=∠BAC-∠BAP∴∠QAB=△PAC又AB=AC,AQ=AP∴△QAB≌△PAC∴B
∵BD,CE平分∠ABC和∠BCD∴∠DBC+∠ECB=1/2(∠ABC+∠ACB)=1/2(180°-70°)=55°∴∠BIC=180°-55°=125°
(1)证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD(SAS),∴BE=CD.②∵△ABE≌△ACD,∴∠ABE=∠ACD,BE=CD,∵M、N分别
平面BCD⊥平面ABC,BD⊥BC,平面BCD∩平面ABC=BC,∴BD⊥平面ABC.AC含于平面ABC,∴AC⊥BD,又AC⊥AB,BD∩AB=B,∴AC⊥平面ABD.又AC含于平面ACD,∴平面A
BF平分∠ABC所以∠ABF=∠FBC因为DE∥BC所以∠FBC=∠DFB可知∠ABF=∠DFBBD=DF同理EF=CEDE=DF+EFDE=BD+CE因为DE∥BC∠FBC=∠DFBBF平分∠DBC
(1)证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M、N分别是BE,C
分析:根据等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及平行线的性质,通过对角度的计算,分别作出符合要求的等腰三角形.如图,(1)过A作AD⊥BC,再过点D作DE∥AB,DF∥AC
过点A作AM⊥BC于点M,交DG于点NAB=AC,AM⊥BCBM=CM=BC/2=12在直角三角形ABM中AM^2=AB^2-BM^2=20^2-12^2=256AM=16DE=MN=AM-ANAN=
(1)证明:∵∠BAC=90°,BD⊥AE,CE⊥AE∴∠ABD+∠BAD=90°,∠BAD+∠EAC=90,∴∠ABD=∠EAC在Rt△BDA和Rt△AEC中,∠ABD=∠EAC,∠ABD=∠EAC
问题一二,前面有人回答过了,我再啰嗦两句:仔细观察你会发现,△BAE≌△CAD,实际上△BAE以A点为中心,顺时针旋转α゜,就是△CAD所在位置,因此△BAE中BE边的中线AM也就跟随△BAE一同旋转
分析:(1)∵∠BAC=∠DAE,∴∠BAE=∠CAD,又∵AB=AC,AD=AE,∴△BAE≌△CAD(SAS)∴BE=CD(全等三角形对应边相等)根据全等三角形对应边上的中线相等,可证△AMN是等
分析:(1)因为∠BAC=∠DAE,所以∠BAE=∠CAD,又因为AB=AC,AD=AE,利用SAS可证出△BAE≌△CAD,可知BE、CD是对应边,根据全等三角形对应边上的中线相等,可证△AMN是等
证:作OE⊥AB交AB与E,OF⊥AC交AC与FOE=OF角ABO=角ACO直角∴△BOE≌△COF(AAS)∴BO=CO∴∠BAO=∠CAO∴△ABD≌△ACD(ASA)∴∠ADB=∠ADC=90°
有图可得a+b>0a-c>0a-b<0所以:丨a+b丨+丨a-c丨+丨a-b丨=a+b+a-c-(a-b)=2a+b-c-a+b=a+2b-c
根据题意有:a<b<0<c;原式=a/(ab)+1/(-b)-2bc/(-bc)=1/b-1/b+2=2;很高兴为您解答,skyhunter002为您答疑解惑如果本题有什么不明白可以追问,