已知3m=4n≠0,则m m n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:50:39
n/m=3/4m/(m+n)=1/[1+n/m]=4/7n/(m-n)=1/[m/n-1]=3m^2/(m^2-n^2)=1/[1-n^2/m^2]=16/7所以原式=9/7当然,你可以通分来算,也能
m,n>0,m^2+n^2/4=1,==>,n^2=4-4m^2>0,0
原式=m(m−n)+n(m+n)−m2(m+n)(m−n)=n2(m+n)(m−n),又3m=4n,则m=43n,则原式=n27n3•13n=97.故答案为97.
m/(m+n)+n/(m-n)-m^2/(m^2-n^2)=m/(m+n)+n/(m-n)-m^2/(m+n)(m-n)=[m(m-n)+n(m+n)-m^2]/(m+n)(m-n)=(m^2-mn+
-40...-m^3n-n^3m=-(m^3n+n^3m)=-(mn(m^2+n^2))=-(4*10)=-40
(4m-5n+17)的平方+|7m-3n+1|=0平方大于等于0,相加为0,所以2个都是04m-5n=-17①7m-3n=-1②①×312m-15n=-51③②×535m-15n=-5④④-③23m=
m^2+2n^2+m-4n/3+17/36=0m^2+m+1/4+2n^2-4n/3+2/9=0(m+1/2)^2+2(n^2-2n/3+1/9)=0(m+1/2)^2+2(n-1/3)^2=0满足上
∵x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,∴二次函数y=x2+4x+6的对称轴为直线x=2m+n+2+m+2n2=3m+3n+22,又∵二次函数y=x2+4x+6的对称轴为直线
m/(m+n)+n/(m-n)-n^2/(m^2-n^2)=[m(m-n)+n(m+n)-n^2]/(m^2-n^2)=m^2/(m^2-n^2)=1/(1-(n/m)^2)=1/(1-(3/2)^2
→m,n为x²+x-1=0的两根→m+n=-1①,mn=-1②→m²+n²=(m+n)²-2mn=3③①②③→m²-mn+n²=3-(-1)
二次项就是mn哦,那a+3=0即a=-3soa-aa=-3-9=-12
m²-2m-3=0m²=2m+3m²-2m-3=0(1)n²-2n-3=0(2)(1)-(2)m²-n²-2m+2n=0(m+n)(m-n)
m-n>0m>n而|m|=3,|n|=7所以n=-7m=3或m=-3m+n=-4或-10
M、N是方程x²-4x-1=0的两根,则M+N=4,MN=-1则:(M/N)+(N/M)=[M²+N²]/(MN)=-(M²+N²)=-[(M+N)&
根据原式可知:m-3n=1,且2m+n-15=1,将m-3n=1移项后为m=1+3n,将其代入2m+n-15=1中:2×(1+3n)+n-15=17n=14n=2m-3×2=1m=7
2m+n分之m-2n=3所以原式=(3+1/3-5/4)[2m+n分之m-2n=3]=25/12×3=25/4
2m-4=0,m=2n+3=0,n=-33m-4n=6+12=18
∵0≤m-n≤2,2≤m+n≤4,∴2≤2m≤6,0≤2n≤4,∴1≤m≤3,0≤n≤2,∴-4≤-2n≤0,∴-3≤m-2n≤3,当m=n=2,∴3m+4n=3×2+4×2=14.故答案为:14.
设双曲线的方程为x平方/a平方-(y/b)平方=1M,N两点分别为(x1,y1)和(x2,y2)16=MN平方=(x1-x2)平方+(y1-y2)平方=(x1-x2)平方*(1+k平方)解得(x1-x