已知:如图,AD∥BC,∠A=∠C.AB与CD有怎样

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:57:52
已知:如图,梯形ABCD中,AD∥BC,∠ABC=90度.

(1)S梯形ABCD=12AC•BD=152;证明:(2)∠BAF=∠BCD.连接EF、BF,∵DF=CF,∠DEC=90°,∴EF=CF=12CD.∴∠FEC=∠C.又∠C+∠ADF=180°,∠F

如图,已知在△abc中,∠c=90°,ac=bc,∠a的平分线ad交bc于点d,过点b作ad的ad的垂线,交ad的延长线

证明延长BF和AC相交于E∵AF是顶角A的平分线,AF⊥BE∴BF=EF(三线合一)在直角三角形ACD和直角三角形BCE中∵AC=BC∠CAD=∠CBE∴△ACD≌△BCE(ASA)∴AD=BE=2B

如图,已知∠A+∠B=∠C+∠D,求证:AD‖BC

因为∠A+∠B+∠C+∠D=360所以∠A+∠B=180所以AD‖BC(同旁内角互补,两直线平行)

如图,已知AD=BC,AD∥BC,求证△ABC全等△CDA

AD=BC.再问:用全等三角形的判断(SSS)(sas)来做

已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.

证明:∵AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFC=90°(垂直的定义),∴∠B=90°-∠1(直角三角形两锐角互余),∠GFC=90°-∠2(互余的定义),∵∠1=∠2   (已知),∴∠

已知:四边形ABCD中,AD‖BC,∠A=90°(2)如图,若AD

过D点做BC的垂线交BC于点E;因为AD=BE=x,DC=AD+BC=x+y;所以BC=BE+EC=AD+EC=DC-AD;所以x+EC=y-x;所以EC=y-2x;由cosC=EC/DC=3/5即(

已知:如图,AD∥BC,AE平分∠BAD,AE⊥BE;说明:AD+BC=AB.

如图,在AB上截取AF=AD,∴AE平分∠BAD,∴∠DAE=∠FAE,∵AF=AD,AE=AE,∴△DAE≌△FAE,∴∠D=∠AFE,∠DEA=∠FEA,∵AD∥BC,∴∠DAB+∠CBA=180

已知:如图,四边形ABCD中,AD∥CB,AD=BC.

证明:∵如图,四边形ABCD中,AD∥CB,AD=BC,∴四边形ABCD是平行四边形,∴AB=CD,∠A=∠C.∴在△ABD与△CDB中,AD=CB∠A=∠CAB=CD,∴△ABD≌△CDB(SAS)

如图,已知AD=BC,AC=BD,求证∠A=∠B

连接AB∵AD=BC,AC=BD,AB=BA∴△ABC≌△BAD∴∠DAB=∠CBA,∠CAB=∠DBA∴∠DAB-∠CAB=∠CBA-∠DBA即∠A=∠B

已知如图AB=CD,AD=BC求证∠A等于∠C

证明:连接BD因为AB=CDAD=BCBD=BD所以三角形ABD和三角形CDB全等(SSS)所以角A=角C

已知,如图AD//BC,

平行∵AD‖BC ∴∠A+∠B=180∵∠A=∠C ∴∠C+∠B=180∴AB平行CD

已知,如图,AB//CD,AD//BC,求证:∠A=∠C,∠B=∠D

∵AB//CD∴:∠A+∠D=180度∵AD//BC∴:∠C+∠D=180度∴:∠A=∠C同理可证:∠B=∠D

已知:如图,AD∥BC,点E在AD上,EF∥AB交BC于F,EG∥CD交BC于G,∠A=125°,∠D=95°,求∠GE

∵EF∥AB,EG∥CD,∴∠AEF=180°-∠A=55°,∠DEG=180°-∠D=85°,∴∠GEF=180°-65°-85°=40°.

已知,如图,AD∥BC,∠BAD=∠BCD,求证:AB∥CD

证明:∵AD//BC【已知】∴∠BAD+∠ABC=180º【平行,同旁内角互补】∵∠BAD=∠BCD【已知】∴∠BCD+∠ABC=180º【等量代换】∴AB//CD【同旁内角互补,

已知,如图,直角梯形ABCD中,AD∥BC,AB⊥AD于A,DE=EC=BC.求证∠AEC=3∠DAE

证明:连接BE并延长,交AD延长线于F∵AD//BC∴∠F=∠CBE,∠FDE=∠C又∵DE=CE∴△DFE≌△CBE(AAS)∴EF=BE∵AB⊥AD∴AE=½BF=EF(直角三角形斜边中

如图,已知AE=CF.∠D=∠B,AD=CB,求证:AD∥BC

证:∵AE=AF+EF=FC=EF+EC∴AF=EC在△ADF和△CBE中∵AD=CB{AF=EC∠D=∠B∴△ADF≌△CBE∴∠A=∠C∵内错角相等,两直线平行∴AD∥BC本题得证注:证全等那里的

如图,已知:AB∥CD,AD∥BC,试说明:∠A+∠1=180°.

证明:∵AB∥DC,∴∠A+∠D=180°,∵AD∥BC,∴∠D=∠1,∴∠A+∠1=180°.

如图,在等腰梯形ABCD中,AD∥BC,已知∠ADC=120°,

(1)∵等腰梯形ABCD中,AD∥BC,∴∠B=∠C,∵∠ADC+∠C=180°,∴∠C=60°∵等腰梯形的底角相等,即∠B=∠C,∴∠B=60°;(2)过点D作DE∥AB交BC于点E.∵AD∥BC,

已知:如图,AD∥BC,AD=BC.求证:(1)△ADC≌△CBA;(2)AB∥CD.

点C、D标反了证明:∵AD∥BC∴∠DAC=∠BCA∵AD=BC,AC=CA∴△ADC≌△CBA(SAS)∴∠CAB=∠ACD∴AB∥CD

如图,已知AB∥CD,∠A=∠C,试说明AD∥BC

∵AB∥CD(已知)∴∠ABF=∠C(两直线平行,同位角相等)又∵∠A=∠C(已知)∴∠A=∠ABF(等量代换)∴AD∥BC(内错角相等,两直线平行)