已知:如图,e,f,g,h分别是正方形abcd各点的中点,af,bg,ch,de
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:36:04
联接EG、GF、FH、HE∵AF=DFBG=GD∴FG∥ABFG=½AB∵AH=CHBE=CE∴HE∥ABHE=½AB∴FG∥HEFG=HE∴四边形EHFG是平行四边形∴EF与GH
证明:(1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF∴EH=GF在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-
额,赶不上节奏啊再问:楼上的看不懂,团长你能复述一遍吗?再答:GH是三角形DAC的中位线,所以GH=AC/2同理,EF是三角形BAC的中位线,所以EF=AC/2因此GH=EFEH是三角形ABD的中位线
将Ac和BD平移到一点其所成锐角为3o度此题可转化成EH和HG的夹角为30度
ABCD是平行四边形,所以角DAB等于角BCD,AH,CF分别是对应的角平分线,可以得出角DAE等于角BCG,同理角ADE等于角CBG,而AD等于CB,所以三角形ADE全等于CBG.所以DE=BG,同
证明:∵平行四边形ABCD∴AD=BC,∠A=C在三角形AEH与三角形CFG中∵AH=AD-DH,CF=BC-BF又AD=BC,BF=DH∴AH=CF①又AE=CG,∠A=C②由①②得三角形AEH≌三
首先题目写错了,应该是四边形ABCD,不是四边形ACBD证明:∵E,F分别是AB,BC边上的中点∴EF是三角形ABC的中位线∴EF∥AC且EF=AC/2同理,GH∥AC且GH=AC/2EH∥BD且EH
在ΔABC中,E,F分别是ABBC中点∴EF是三角形中位线∴AC//EF又EF在平面EFG内AC不在面EFG内∴AC//平面EFG同理可证,BD平行平面EFG
连接AC、BDH、G分别是AD、CD的中点,HG||ACE、F分别是AB、BC的中点,EF||AC故HG||EF同理,GF||BD,HE||BDGF||HE所以四边形EFGH是平行四边形.
如图,连结AC,BDEFGH是平行四边形.由E,F,G,H分别是AB,BC,CD,DA的中点可知EF,FG,GH,EH分别是三角形ABC,BCD,CDA,ABD的中位线,由定理:三角形的中位线平行于三
连接AD,在三角形ABD中,EF是中线所以EF平行AD且EF=AD/2同理在三角形ACD中,HG是中线HG平行AD且HG=AD/2所以EF平行HG且EF=HG所以EFGH是平行四边形
连接EG和HF交点是O则OE=OH=AE=AH所以三角形AEH和OEH全等同理,其他三队三角形也是全等三条小正方形面积是大正方形的一半=100÷2=50边长=√50=7.1厘米
连接AC.因为E.F.G.H分别是AB,BC,CD,DA的中点所以根据中位线定理得:GH//AC,GH=1/2AC;EF//AC,EF=1/2AC即:EF//GH;且EF=GH所以四边形EFGH是平行
证明:连接BDEH是△ABD的中位线∴EH‖BD,EH=1/2BD同样FG是△BCD的中位线∴FG‖BD,FG=1/2BD所以:EH‖FG,EH=FG根据一组对边平行且相等的四边形是平行四边形得到:四
四边形EFGH是平行四边形理由:连接BD∵E,F,G,H分别是边AB,BC,CD,DA的中点∴EH,FG分别是中位线∴EH∥BD,EH=½BDFG∥BD,FG=½BD∴EH∥FG,
这个本来就是定理.证明:依题意得Rt△AOB≌Rt△AOD≌Rt△COD≌Rt△COB根据勾股定理可得EO=FO=GO=HO∴EG=FH又根据中点四边形定理,四边形EFGH是平行四边形∵EG=FH(对
证明:连接BD∵E是AB中点,H是AD中点∴EH‖BD∵F是BC的中点,G是CD的中点∴FG‖BD∴EH‖FG
其实不需要提问,网页上搜就有http://zhidao.baidu.com/question/96211040.html虽说不是自己做的,但还是望采纳啊.
证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD∵点E、F分别是AB、CD的中点,∴DH/HB=DF/AB=DF/CD=1/2.∴DH=1/3BD.同理:BG=1/3BD.∴DH=H