已知a>b>c求证1 a-b 1 b-c大于等于4 a-c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:06:01
已知a+b+c=1,a方+b方+c方=1,a>b>c,求证-1/3

注意到a^2+b^2>[(a+b)^2]/2即a^2+b^2=1-c^2>(1-c)^2/23c^2-2c-10则1>a>b>c>0a^2+b^2+c^2

已知a+b+c=0求证:(a-b/c+b-c/a+c-a/b)(c/a-b+a/b-c+b/c-a)=9

(a-b)/c+(b-c)/a+(c-a)/b=(ab(a-b)+bc(b-c)+ca(c-a))/(abc)=(ab(a-b)+c(b²-a²)+c²(a-b))/(a

已知a>b>c>d,求证1/a-b+1/b-c+1/c-a>=9/a-d

记x=a-b,y=b-c,z=c-d,则x+y+z=a-d原问题变为1/x+1/y+1/z>=9/(x+y+z)由于【(x+y+z)】【1/x+1/y+1/z】=3+x/y+y/x+y/z+z/y+x

已知a,b,c∈R+,a+b+c=1,求证bc/a+ac/b+ab/c>=1

c/a+ac/b+ab/c=(b^2c^2+a^2c^2+a^2b^2)/abc=2(b^2c^2+a^2c^2+a^2b^2)/2abc分子(b^2c^2+a^2c^2)+(a^2c^2+a^2b^

已知a,b,c属于R+,a+b+c=1,求证:1/a+1/b+1/c>=9

如果知道Cauchy不等式,直接1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)≥(1+1+1)²=9.如果只会均值不等式,就展开1/a+1/b+1/c=(a+b+c)(1/

已知a,b,c为正实数~求证(a+b+c)(1/a+1/b+1/c)≥9

因为a,b,c为正实数所以a+b+c≥3(abc)^1/31/a+1/b+1/c≥3(1/abc)^1/3所以(a+b+c)(1/a+1/b+1/c)≥3(abc)^1/3*3(1/abc)^1/3=

已知a+b+c=1,求证:a^2+b^2+c^2大于等于三分之一

由a+b+c=1得到(a+b+c)^2=1a^2+b^2+c^2+2ab+2bc+2ac=1a^+b^2+c^2=1-2ab-2bc-2ac>=1-(a^2+b^2)-(b^2+c^2)-(a^2+c

已知a+b+c=1,a平方+b平方+c平方=3,a>b>c,求证 -2/3

a>b>ca+b+c=1=>a=1-(b+c)假设b+c=1+2/3=5/3b^2+c^2>=(b+c)^2/2=>a^2+b^2+c^2>(5/3)^2+(b+c)^2/2=25/9+2/9=3(因

已知a>b,c>d,求证a+c>b+d.

a>b.(1)c>d.(2)(1)+(2)得:a+c>b+d

已知a,b,c∈R+,a+b+c=1,求证:1a+1b+1c≥9

证明:由题意知1a+1b+1c=a+b+ca+a+b+cb+a+b+cc=3+(ba+ab)+(ca+ac)+(bc+cb)∴ba+ab≥2,ca+ac≥2,bc+cb≥2.当且仅当a=b=c时,取等

已知a>b>c,且2a+3b+4c=0.(1)求证:a+b+c>0

√(b^2-4ac)/(a的绝对值)=√91/6(b^2-4ac)/a^2=91/3636(b^2-4ac)=91a^22a+3b=-4c36[b^2+a(2a+3b)]=91a^236b^2+72a

1,已知a,b,c属于正数,求证:a2/b+b2/c+c2/a≥a+b+c.

(1)a²/b+b≥2ab²/c+c≥2bc²/a+a≥2c上面3式相加得a²/b+b+b²/c+c+c²/a+a≥2a+2b+2c(a&s

已知a+b+c=1求证ab+bc+ca

a+b+c=1,给这个式子平方,(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ac),因为a^2+b^2>=2ab,b^2+c^2>=2bc,a^2+c^2>=2ac,所以a^2+b^2

已知a+b+c=1求证ab+ac+bc

(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac=1由a^2+b^2≥2ab得:0.5(a^2+b^2)≥ab同理:0.5(b^2+c^2)≥bc0.5(c^2+a^2)≥ca所以1

1.已知:a/b=(a-c)/(c-b),求证:1/a+1/b=2/c

1.已知:a/b=(a-c)/(c-b),求证:1/a+1/b=2/c由a/b=(a-c)/c-b)得:(a+b)/b=(a-c+c-b)/(c-b)=(a-b)/(c-b)所以:(a+b)(c-b)

已知a>b>c,求证1/(a-b)+1/(b-c)+1/(c-a)>0

方法1要证1/(a-b)+1/(b-c)+1/(c-a)>0只需证1/(a-b)+1/(b-c)>-1/(c-a)只需证1/(a-b)+1/(b-c)>1/(a-c)因为a>b>c,所以(a-b)>0

已知a、b、c∈R*,求证a+b+c+1/a+1/b+1/c≥6

因为a+1/a≥2倍根号下(a*1/a)=2b+1/b≥2c+1/c≥2所以a+b+c+1/a+1/b+1/c≥6提示:利用基本不等式

已知a、b、c都是正数,求证:

由于a^2/b+b≥2ab^2/c+c≥2bc^2/a+a≥2c上面3式相加得a^2/b+b+b^2/c+c+c^2/a+a≥2a+2b+2c(a^2/b+b^2/c+c^2/a)+(a+b+c)≥2

已知1/a+1/b+1/c=1/(a+b+c),求证:a,b,c中必有两个互为相反数

很简单的(ab+bc+ac)/abc=1/a+b+c,去分母(ab+bc+ac)(a+b+c)=abc,而左边可化为[a(b+c)+bc][a+(b+c)]=a^2(b+c)+abc+a(b+c)^2

已知a>b>c,求证a²b+b²c+c²a>ab²+bc²+ca

由a>b>c,有a-b>0,b-c>0,a-c>0.故(a-b)(b-c)(a-c)>0,展开即得a²b+b²c+c²a>ab²+bc²+ca