已知ab是半径为1的圆o的直径,c是圆上一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:28:20
连接AE所以AE垂直CB因为AB=2√3所以∠AOB=120°所以角C=60°在RT三角形AEC中CE/AC=cos60°=1/2(*)而三角形CED相似于三角形CAB所以DE/AB=CE/AC由(*
OA=OC=半径,角AOC=60°三角形OAC就是等边三角形AC弦=2
过点P作PD⊥BQ,则可知ABPD为矩形,BD=AP=1PD=ABQD=BQ-BD=-4-1=3由题可知PC=AP=1CQ=BQ=4则PQ=4+1=5在Rt△PDQ中,PD=PQ-QD=5-3则PD=
∵∠COD=120°CO=DO∴∠COE=∠DOE=60°又∵AB⊥CD∴∠C=∠D=30°又∵OD=8cm∴OE=4cm∴在RT△OED中ED=根号下OD²+OE²=根号下8
你这题好像,说的不完整哟.比如,D为那里的任意一点是弦上?还是OC上?
楼上的不要擅自加条件1.连接OF,OD因为CD是与OB垂直的圆O的弦,又根据圆的对称性得DM=MC所以以CD为直径的圆的圆心为M所以EM=MC因为角AMC为90度所以角FCD=45度所以圆心角FOD=
①若C在OA上②若C在OB上设CO为X,则AC为6-x同理:CO=X=3在Rt△DCO中∵AO=r=6∴AC=AO+OC∴AC=A0+OC=3+6(3√3)²+x²=36=927+
呵呵,看看吧http://www.qiujieda.com/math/9020177
∵pc与圆O相切,oc为圆O半径∴pc垂直于oc,△ocp为直角三角形根据勾股定理,∴op=√3^2+4^2=5∵S△ocp=S△ocp且cd垂直于ab∴(oc*cp)/2=(cd*op)/2即(3*
证明:连接AC,则∠ACB=90°,易证∠BCF=∠BAC∵C是弧BD的中点∴弧BC=弧CD∴∠BAC=∠CBF∴∠CBF=∠BCF∴BF=CF连接OC,交BD于点M∵C是弧BD的中点∴OC⊥BD则O
∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直
很高兴为您解答.可知:则AD=BD=(r根号3)/2直角三角形AOD中解得OD=r/2因此OD=DC=r/2所以四个直角三角形AOD,BOD,ADC,BDC全等所以四条边相等所以为菱形则面积=根三/2
6*2*3.14÷2=18.84cm这是小圆的周长的一半10*2*3.14÷2=31.4cm这是大圆的周长的一半(10-6)*2=8cm18.84+31.4+8=58.24
(1)证明:连接AO,因为△ABC中,AB=AC,∠ABC=30°,所以∠ACB=∠ABC=30°,即∠BAC=120°,又因为OA=OC所以∠OAC=∠OCA=30°,因此∠OAB=90°,即OA⊥
连接OC,∵AB是圆O的直径,P在AB的延长线上,PD切圆O于点C.圆O半径为3,OP=2,∴PB=2-3,PA=2+3,∴PC2=PB?PA=(2?3)(2+3)=1,∴PC=1.在Rt△OCP中,
如图,连接O1D,∵圆O1的切线AD交OC的延长线于点E,∴O1D⊥AE,由题意知,CO=AO=2r,O1D=O1C=r,由切线长定理知,AD=AO=2r,∴AO1=根号5r,由勾股定理得,AE2=A
根号5分之16利用三角形相似性连接EA,则三角形BDO和BAE相似则:BD/AB=OB/BEBD利用勾股玄定理求得是2倍根号5则BE==AB*OB/BD=32/2倍根号5==根号5分之16
第一题是(1)..第二题是(4)..第三题是(1)..第四题是(相等)..
已知,AB为圆O的直径,以A为圆心,以AO为半径画弧,交圆O于C,D两点,试证明三角形BCD是等边三角形证明:连接AC、AD、OC、OD因为:AC=AD=OC=OD,所以△OAC、△OAD都是等边三角
(1)设AA1=h,∵底面半径R=1,圆柱的表面积为8π,∴2π×12+2πh=8π,解得h=3.∵点C在底面圆O上,且∠AOC=120°,AB是圆柱OO1底面圆O的直径,∴AB=2,BC=1,AC=