已知ad∥bc,ab∥cd,e为射线bc上一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:45:20
(1)证明:在梯形ABCD中,∵AD∥BC,AB=CD,∴∠ABE=∠BAD,∠BAD=∠CDA,∴∠ABE=∠CDA在△ABE和△CDA中,AB=CD∠ABE=∠BE=DACDA,∴△ABE≌△CD
延长AE,DC交于点F∵AB∥FC∴∠ABE=∠FCE又BE=CE(中点定义),∠AEB=∠FEC(对顶角相等)∴△ABE≌△FCE(ASA)∴AE=FE,AB=FC又∠AED=90°,∠FED=18
证明:(1)如图所示,延长DE交AB的延长线于点M,∵AB∥CD,∴∠CDE=∠M,(两直线平行,内错角相等).在△DCE和△MBE中,∠CDE=∠M∠CED=∠BEMCE=BE∴△DCE≌△MBE(
∵AD=BC,DE=CF,∴AE=BF,∵ABCD是等腰梯形,∴∠EAB=∠FBA,在△EAB和△FBA中,AE=BF∠EAB=∠FBAAB=BA∴△EAB≌△FBA,∴AF=BE.
(1)证明:由题意可得ABCD是等腰梯形,∴∠A=∠D,在△ABE和△DCE中,AE=ED∠A=∠DAB=DC,∴△ABE≌△DCE.(2)四边形EGFH是菱形.证明:∵GF、FH是△EBC的中位线,
连结AC因为AB∥DC,所以∠BAC=∠DCA因为AD∥BC,所以∠BCA=∠DAC所以对于三角形ABC和三角形CDA来说∠BAC=∠DCAAC=CA∠BCA=∠DAC所以三角形ABC和三角形CDA全
证明:延长AE交BC的延长线于点F∵AD∥BC∴∠DAE=∠F,∠ADE=∠FCE∵AE平分∠BAD∴∠BAF=∠DAF∴∠BAF=∠F∴AB=BF∵E是CD的中点∴CE=DE∴△ADE≌△FCE(A
证明:(1)过E作EF∥BC,∵E是CD的中点,∴F为AB中点,∴EF是梯形ABCD的中位线,则EF=12(AD+BC)=12AB,∴AE⊥BE(直角三角形斜边的中线等于斜边的一半);(2)∵EF是梯
ABCD在一个面上,令这个面为贝塔.则贝塔不能与阿尔法平行.所以贝塔与阿尔法交于一条线a.则AB、BC、CD、DA与阿尔法的交点E、F、G、H都在两面的交线a上,得证.
证明:设DH交AC于点E因为AB=CD,AD//BC,所以:梯形ABCD是等腰梯形则∠ABC=∠DCB又BC是公共边所以△ABC≌△DCB(SAS)则∠ACB=∠DBC又AC⊥BD所以△BOC是等腰直
1.∵AB∥CD,∴∠KAB=∠KDC,又∵∠AKB=DKC,∴△AKB∽△DKC,………………………………………………………………2分∴.……………………………………………………4分2.猜想:AB=
∵EF∥AB,EG∥CD,∴∠AEF=180°-∠A=55°,∠DEG=180°-∠D=85°,∴∠GEF=180°-65°-85°=40°.
证明:∵AD⊥BD,∴△ABD是Rt△∵E是AB的中点,∴BE=12AB,DE=12AB(直角三角形斜边上的中线等于斜边的一半),∴BE=DE,∴∠EDB=∠EBD,∵CB=CD,∴∠CDB=∠CBD
连接ACAB=BC∠BAC=∠BCAAB//CD∠BAC=∠ACD=∠BCAAE垂直BCAD垂直CDAD=AD△ADC≌△AECCD=CE哪步看不懂可以问再哦
1里面E为BD中点吧?再问:BD没有连接没有图对不起了可以先算下一道再答:1,连接DE并延长,交CB延长线于F则△DAE≌△FBE∴BF=AD,DE=EF∵CD=BC+AD∴CD=BC+BF=CF∵D
延长AE、BC交于点F,∵AD∥BC,∴∠DAE=∠CFE,∵AE平分∠BAD,∴∠DAE=∠BAF,∴∠BAF=∠CFE,∴AB=BF,∵AB=BC+AD,BF=BC+CF,∴AD=CF,∴△ADE
证明:取BD的中点H,连接EH、FH,∵E,F分别是AB,CD的中点,∴EH是△ABD的中位线,FH是△BCD的中位线,∴EH=12AD,EH∥AD,FH=12BC,FH∥BC,∴EF+FH=12(A
∵AD//BC所以∠DAB+∠ABC=180°;∵AE平分∠DAB.BE平分∠ABC,∴∠EAB+∠ABE=1/2(∠DAB+∠ABC)=90°,所以△ABE为直角△.过E作EF//AD交AB于F,则
点C、D标反了证明:∵AD∥BC∴∠DAC=∠BCA∵AD=BC,AC=CA∴△ADC≌△CBA(SAS)∴∠CAB=∠ACD∴AB∥CD