已知an-2an-1=2^n,证明数列an 2n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:33:11
已知数列{An}满足:A1=3 ,An+1=(3An-2)/An,n属于N*.1)证明:数列{(An--1)/(An--

(1)设f(x)=(3x-2)/x,方程f(x)=x有1,2俩个根A(n+1)-1=(3An-2)/An-1=2(An-1)/An(A(n+1)-1)/(A(n+1)-2)=2(An-1)/(An*(

已知数列满足:A1=1.AN+1=1/2AN+N,N奇数,AN-2N.N偶数

(1)bn=a(2n+1)+4n-2b(n+1)=a(2n+3)+4(n+1)-2=a(2n+2+1)+4n+2=a(2n+2)-2(2n+2)+4n+2=a(2n+1+1)-2(2n+2)+4n+2

已知等比数列{an}中有an+1-an=n×2^n且a1=1求an

An+1-An=n*2^nA2-A1=1*2^1A3-A2=2*2^2.An-An-1=(n-1)*2^n-1上面的等式两边同时相加An-A1=1*2^1+2*2^2+.+(n-1)*2^n-1代入A

已知数列an中,a1=1,an+1=2an/an+2(n属于正整数),求通项公式an?

先求倒数1/a(n+1)=(an+2)/(2an)1/a(n+1)=1/2+(1/an)所以1/an是一个等差数列,公差d为1/2所以1/an=1/a1+(n-1)*d=1/a1+(n-1)/2

已知数列an中,a1=2,an+1=an+lg(n/n+1)求an

a(n+1)=an+lg[n/(n+1)]即a(n+1)-an=lgn-lg(n+1)将n=1,2,3,...代入,得a2-a1=lg1-lg2a3-a2=lg2-lg3.an-a(n-1)=lg(n

已知数列{an}满足a1=1/2,an+1=an+1/n的平方+n求an

an+1=an+1/n的平方+nan+1-an=1/n^2+nan+1-an=1/n(n+1)an+1-an=(1/n)-1/(n+1)an-an-1=(1/n-1)-1/nan-1-an-2=(1/

已知数列{an}满足an+1=2an+n+1(n∈N*).

(1)由已知a2=2a1+2,a3=2a2+3=4a1+7,若{an}是等差数列,则2a2=a1+a3,即4a1+4=5a1+7,得a1=-3,a2=-4,故d=-1.  &nbs

已知数列{an}满足a1=1,a2=2,an+2=(an+an+1)/2,n∈N*.令bn=an+1-an,证明{bn}

上面的答案显然有点问题(1)an+2=(an+an+1)/22a(n+2)=an+a(n+1)2[a(n+2)-a(n+1)]=-[a(n+1)-an][a(n+2)-a(n+1)]/[a(n+1)-

已知数列{an}中,a1=2,an+1=an²+2an(n∈N+)

a(n+1)=an^2+2ana(n+1)+1=(an+1)^2log2[(a(n+1)+1]=2log2[(an)+1]log2[(a(n+1)+1]/log2[an+1]=2{log2[a(n+1

已知数列{an}满足a1=1,a2=2,an+2=an+an+12,n∈N*.

(1)证b1=a2-a1=1,当n≥2时,bn=an+1−an=an−1+an2−an=−12(an−an−1)=−12bn−1,所以{bn}是以1为首项,−12为公比的等比数列.(2)解由(1)知b

已知数列{an}满足a1=33,an+1-an=2n 则求an/n?

a(n+1)-an=2nan-a(n-1)=2(n-1)-----------(1)a(n-1)-a(n-2)=2(n-2)-------(2)……………………a2-a1=2×1-----------

在数列{An}中,已知An+A(n+1)=2n (n∈N*)

(1)证明:∵在数列{a[n]}中,已知a[n]+a[n+1]=2n(n∈N*)∴用待定系数法,有:a[n+1]+x(n+1)+y=-(a[n]+xn+y)∵-2x=2,-x-2y=0∴x=-1,y=

已知数列{an}中,a1=1,满足an+1=an+2n,n属于N*,则an等于

应该是A(n+1)=An+2n吧~~~=>a(n+1)-an=2n所以an-a(n-1)=2(n-1)a(n-1)-a(n-2)=2(n-2)...a2-a1=2*1把左边加起来,右边加起来得到an-

已知数列{an}满足an+1=2an+3.5^n,a1=6.求an

a(n+1)-2an=3.5^n,则a2-2a1=3.5^1a3-2a2=3.5^2.a(n+1)-2an=3.5^n以上式子相加,得a(n+1)-a1-Sn=3.5+3.5^2+...+3.5^n=

已知A1=1,An=2An-1+n(n>1),求An.

[]为下标A[n]+n+2=2A[n-1]+2(n-1)+4设b[n]=A[n]+n+2b[1]=4b[n]=2[bn-1]b[n]=2*2^nA[n]=b[n]-2-nA[n]=2*2^n-2-n

已知数列{an}中a1=6,且an-an-1=(an-1/n)+n+1(n属于N*,n≥2),求an

an=(n+1)(n+2)再问:有木有过程?再答:原式整理后得到an=(n+1)(an-1/n+1)试值:a2=(2+1)(6/2+1)=(2+1)(2x3/2+1)=12=3x4a3=(3+1)(1

已知数列{An},An+1=2(n+1)+An,求数列An通向

A(n+1)=An+2(n+1)A(n+1)-An=2(n+1)即An-A(n-1)=2nA(n-1)-A(n-2)=2(n-1).A3-A2=2*3A2-A1=2*2以上各式相加得:An-A1=2*

已知数列{an}满足a1=33,an+1-an=2n 则求an/n的最小值

a(n+1)-an=2nan-a(n-1)=2(n-1)-----------(1)a(n-1)-a(n-2)=2(n-2)-------(2)……………………a2-a1=2×1-----------

在数列{an}中,已知(a1+a2+…+an)/n=(2n-1)an

sn/n=(2n-1)an(n>=1),sn=(2n^2-n)an,s(n+1)=(2n^2+3n+1)a(n+1),两者相减可得(2n+3)an+1=(2n-1)an,an=(2n-3)*a(n-1