已知an-2an-1=2^n,证明数列an 2n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:33:11
(1)设f(x)=(3x-2)/x,方程f(x)=x有1,2俩个根A(n+1)-1=(3An-2)/An-1=2(An-1)/An(A(n+1)-1)/(A(n+1)-2)=2(An-1)/(An*(
(1)bn=a(2n+1)+4n-2b(n+1)=a(2n+3)+4(n+1)-2=a(2n+2+1)+4n+2=a(2n+2)-2(2n+2)+4n+2=a(2n+1+1)-2(2n+2)+4n+2
An+1-An=n*2^nA2-A1=1*2^1A3-A2=2*2^2.An-An-1=(n-1)*2^n-1上面的等式两边同时相加An-A1=1*2^1+2*2^2+.+(n-1)*2^n-1代入A
先求倒数1/a(n+1)=(an+2)/(2an)1/a(n+1)=1/2+(1/an)所以1/an是一个等差数列,公差d为1/2所以1/an=1/a1+(n-1)*d=1/a1+(n-1)/2
a(n+1)=an+lg[n/(n+1)]即a(n+1)-an=lgn-lg(n+1)将n=1,2,3,...代入,得a2-a1=lg1-lg2a3-a2=lg2-lg3.an-a(n-1)=lg(n
an+1=an+1/n的平方+nan+1-an=1/n^2+nan+1-an=1/n(n+1)an+1-an=(1/n)-1/(n+1)an-an-1=(1/n-1)-1/nan-1-an-2=(1/
(1)由已知a2=2a1+2,a3=2a2+3=4a1+7,若{an}是等差数列,则2a2=a1+a3,即4a1+4=5a1+7,得a1=-3,a2=-4,故d=-1. &nbs
上面的答案显然有点问题(1)an+2=(an+an+1)/22a(n+2)=an+a(n+1)2[a(n+2)-a(n+1)]=-[a(n+1)-an][a(n+2)-a(n+1)]/[a(n+1)-
a(n+1)=an^2+2ana(n+1)+1=(an+1)^2log2[(a(n+1)+1]=2log2[(an)+1]log2[(a(n+1)+1]/log2[an+1]=2{log2[a(n+1
(1)证b1=a2-a1=1,当n≥2时,bn=an+1−an=an−1+an2−an=−12(an−an−1)=−12bn−1,所以{bn}是以1为首项,−12为公比的等比数列.(2)解由(1)知b
a(n+1)-an=2nan-a(n-1)=2(n-1)-----------(1)a(n-1)-a(n-2)=2(n-2)-------(2)……………………a2-a1=2×1-----------
(1)证明:∵在数列{a[n]}中,已知a[n]+a[n+1]=2n(n∈N*)∴用待定系数法,有:a[n+1]+x(n+1)+y=-(a[n]+xn+y)∵-2x=2,-x-2y=0∴x=-1,y=
应该是A(n+1)=An+2n吧~~~=>a(n+1)-an=2n所以an-a(n-1)=2(n-1)a(n-1)-a(n-2)=2(n-2)...a2-a1=2*1把左边加起来,右边加起来得到an-
a(n+1)-2an=3.5^n,则a2-2a1=3.5^1a3-2a2=3.5^2.a(n+1)-2an=3.5^n以上式子相加,得a(n+1)-a1-Sn=3.5+3.5^2+...+3.5^n=
[]为下标A[n]+n+2=2A[n-1]+2(n-1)+4设b[n]=A[n]+n+2b[1]=4b[n]=2[bn-1]b[n]=2*2^nA[n]=b[n]-2-nA[n]=2*2^n-2-n
an=(n+1)(n+2)再问:有木有过程?再答:原式整理后得到an=(n+1)(an-1/n+1)试值:a2=(2+1)(6/2+1)=(2+1)(2x3/2+1)=12=3x4a3=(3+1)(1
A(n+1)=An+2(n+1)A(n+1)-An=2(n+1)即An-A(n-1)=2nA(n-1)-A(n-2)=2(n-1).A3-A2=2*3A2-A1=2*2以上各式相加得:An-A1=2*
a(n+1)-an=2nan-a(n-1)=2(n-1)-----------(1)a(n-1)-a(n-2)=2(n-2)-------(2)……………………a2-a1=2×1-----------
sn/n=(2n-1)an(n>=1),sn=(2n^2-n)an,s(n+1)=(2n^2+3n+1)a(n+1),两者相减可得(2n+3)an+1=(2n-1)an,an=(2n-3)*a(n-1