已知an首项an=1地递数列,且an 1 an=4 a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:15:25
已知数列{an},a1=1,an+1-an=2^n,求数列{an}通项公式

a(n+1)-an=2^n则an-a(n-1)=2^(n-1)……a2-a1=2^1相加an-a1=2^1+……+2^(n-1)=2*[1-2^(n-1)]/(1-2)=2^n-2a1=1所以an=2

已知数列an的递推公式为:a1=1,an=an-1/(1+2an-1),求an

令bn=1/an则bn=(1+2an-1)/an-1=1/an-1+2=1/an1/an-1/an-1=2bn-bn-1=2bn=2n-1an=1/(2n-1)

已知数列{an},a1=2,an+1=an+2n,则数列的通项公式an=?

an+1=an+2n推出an=an-1+2(n-1)...a2=a1+2累加得an=a1+2(2+3+4+...n-1)an=2+n(n-1)an=n^2-n+2(n>=1)

已知数列an中,a1=1,an+1=2an/an+2(n属于正整数),求通项公式an?

先求倒数1/a(n+1)=(an+2)/(2an)1/a(n+1)=1/2+(1/an)所以1/an是一个等差数列,公差d为1/2所以1/an=1/a1+(n-1)*d=1/a1+(n-1)/2

已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an求an

由an+2=3an+1-2an可得an+2-an+1=2(an+1-an)因为a2-a1=2,所以an+1-an不会等于0,则an+1-an是以2为公比的等比数列由上可得an+1-an=2^nan-a

已知数列{an}满足a1=1/2,an+1=3an+1,求数列{an}通项公式

a(n+1)=3an+1a(n+1)+1/2=3an+3/2=3(an+1/2)[a(n+1)+1/2]/(an+1/2)=3,为定值.a1+1/2=1/2+1/2=1数列{an+1/2}是以1为首项

已知数列{an}中,an=2

∵数列{an}中,an=2n−1(n为正奇数)2n−1(n为正偶数),∴a9=29-1=28=256.S9=21-1+(2×2-1)+23-1+(2×4-1)+25-1+(2×6-1)+27-1+(2

已知数列{An}首项A1=2/3,An+1=2An/An+1,求数列{n/An}的前n项和Sn

是a(n+1)=2an/(an+1)吧a(n+1)=2an/(an+1)1/a(n+1)=(an+1)/(2an)=(1/2)(1/an)+(1/2)1/a(n+1)-1=(1/2)(1/an)-(1

若数列{An}满足An+1=An^2,则称数列{An}为“平方递推数列”,已知数列{an}中,a1=9,点(an,an+

x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10

已知数列{an}中a1=1,an+1-an=3n,求数列{an}的通项公式.

此类题目采用累加法或迭代法∵an+1-an=3n(往下递推)∴an-an-1=3(n-1)an-1-an-2=3(n-2).a3-a2=3×2a2-a1=3×1以上格式左边+左边=右边+右边左边相加的

已知数列an满足 a1=1/2,an+1=3an/an+3求证1/an为等差数列

证明:取倒数1/an+1=an+3/3an=1/3+1/an1/an+1-1/an=1/3a1=1/21/a1=2{1/an}2首项1/3公差等差数列an=3/(5+n)

已知数列{an}满足an+1=2an+3.5^n,a1=6.求an

a(n+1)-2an=3.5^n,则a2-2a1=3.5^1a3-2a2=3.5^2.a(n+1)-2an=3.5^n以上式子相加,得a(n+1)-a1-Sn=3.5+3.5^2+...+3.5^n=

已知数列{An}满足A1=1,An+1=2An+2^n.求证数列An/2是等差数列

你应该是抄错题了吧--A(n+1)=2An+2^n等式两边同时除以2^(n+1)有A(n+1)/2^n+1=An/2^n+1/2设Bn=An/2^n则B(n+1)=Bn+0.5Bn是等差数列即An/2

已知数列{An},An+1=2(n+1)+An,求数列An通向

A(n+1)=An+2(n+1)A(n+1)-An=2(n+1)即An-A(n-1)=2nA(n-1)-A(n-2)=2(n-1).A3-A2=2*3A2-A1=2*2以上各式相加得:An-A1=2*

已知数列an满足a1=1,1/an+1=根号1/an^2+2,an>0,求an

因为不清楚你写的到底是怎样,我把我理解出的可能的两种题目都写出来.①假定原题为1/(An+1)=√[1/(An²+2)]两边同时平方,有1/(An+1)²=1/(An²+

已知数列{an},a1=1,an+1=3an/2an+3,(1)求数列{an}的前五项)(2)数列{an}的通项公式

(1)a(n+1)=3an/(2an+3)a1=1a2=3a1/(2a1+3)=3/5a3=3a2/(2a2+3)=3/7a4=3a3/(2a3+3)=3/9=1/3a5=3a4/(2a4+3)=3/

已知数列{an}中,a1=1,an+1=2an+1,令bn=an+1-an.

(1)证明:由an+1=2an+1,得an=2an-1+1(n≥2),两式相减得:(an+1-an)=2(an-an-1).∵bn=an+1-an,∴bn=2bn-1.又b1=a2-a1=(2a1+1

已知数列{an}满足an+1=an+n,a1等于1,则an=?

A2=A1+1A3=A2+2A4=A3+3.An=A(n-1)+(N-1)左式上下相加=右式上下相加An=A1+[1+2+3+...+(N-1)]An=1+[N(N-1)]/2

已知数列{an}中,首项a1=3/5,an+1=3an/(2an+1),求数列{an}的通项公式

分子分母颠倒求解1/a(n+1)=(2an+1)/3an=2/3+1/3an(1/a(n+1)-1)=1/3*(1/an-1)所以数列1/an-1是以2/3为首项,1/3为公比的等比数列1/an=1+