已知limX→一∞[zX一√X²一x一(aX十b)]二0求常数ab的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:32:49
求极限limx→0(e^x一1一x)^2/tanx*sin^3x

再问:我大一新生,对泰勒公式不太熟悉,能帮忙解释下吗:再问:大神请问在书上哪部分?我自己研究再答:一般在微分中值定理的那一章再问:谢谢啦

求极限~limx→∞ ln x+5/√x^2+1

limx→∞ln(x+5)/√(x^2+1)(这是∞/∞型,运用洛必达法则得)=limx→∞1/[(x+5)*2x/2√(x^2+1)]=limx→∞√(x^2+1)/[(x+5)*x]=0再问:啊~

limx→∞(1+1/2x)^3x+2

limx→∞(1+1/2x)^3x+2=limx→∞(1+1/2x)^2x*(3x+2)/(2x)=e^limx→∞(3x+2)/(2x)=e^(3/2)

已知limx→∞[(x^2+1)/(x+1)-(ax+b)]=0,求常数a,b的值

limx→∞[(x^2+1)/(x+1)-(ax+b)]=limx→∞[x^2(1-a)-(a+b)x+(1-b)]/(1+x)=0则x^2,x系数均为0.故1-a=0a+b=0解得a=1b=-1

用洛必达法则求极限求极限limx→0 sin3x/x.limx→ +∞ ln(e^x+1) /e^x.limx→+∞ x

对分子分母分别求导,再取极限.sin3x求导=3cos3x,x求导=1,当x=0,极限为3cos0/1=3同样求导,分子=e^x/(e^x+1),分母=e^x.x趋向正无穷,分子除分母=1/(e^x+

若极限limx→∞【4x^2+3/x-1+ax+b】=0.求常数a b.求极限limx→∞(√

再问:第一题不对!答案是a=b=-4再答:你用照片把题目发过来,好吗?再问:再问:第2题再答:然后你把值代入原式再算一下。再问:哦!好的谢谢再答:客气了。

设limx→x

证:假设limx→x0[f(x)+g(x)]=B存在.则limx→x0g(x)=limx→x0[f(x)+g(x)−f(x)]=limx→x0[f(x)+g(x)]−limx→x0f(x)=B−A所以

limx->+∞ x[(√x²+1)-x]的极限

limx[(√x^2+1)-x=limx[(√x^2+1)-x]*[(√x^2+1)+x]/[(√x^2+1)+x]x→+∞x→+∞=limx/[(√x^2+1)+x]x→+∞=limx*(1/x)/

高数limx趋近于1 3倍根号x减一

3倍根号是指3乘以x的开二次方的话,那就是2,如果是指x的开三次方根的话,那就是0再问:有过程吗,应该是第一种再答:当x趋向于1的时候,根号x的值也趋向于1,那么三倍的根号x就趋向于3,再减去1的话就

limx→0xsin(1/x)=0 limx→ ∞xsin(1/x)=1 limx→ ∞(1/x)sinx=1 为什么?

这三个都是不定式的积分,第一个:limx→0xsin(1/x)=0x是无穷小量;sin(1/x)相当于sin∞,但属于有界变量(±1之间)无穷小量乘以有界变量还是无穷小量,所以极限是0第二个:limx

极限limx(x→+∞)[√(x^2+1)-x]=

分子有理化x^2+1-x^2/[√(x^2+1)+x]=1/[√(x^2+1)+x]当(x→+∞)极限为0

已知limx→+∞=1,如何证明limx→+∞∫(上限x下限0)e^tf(t)dt也趋向于正无穷呢?

因为lim(x→+∞)f(x)=1,故取ε=1/2, 则存在N,当|x|>N 后,|f(x)-1|1/21/2limx→+∞∫(上限x下限0)e^tdt

limx→∞(√x+1-√x)求极限啊

limx→∞(√x+1-√x)=limx→∞1/(√x+1+√x)=0

设limx→∞f'(x)=k求limx→∞[f(x a)-f(x)]

ak!再答:泰勒展开式!再答:再问:没有教泰勒展开式。。。再答:拉格朗日教了吧!我写的也是拉格朗日中值定理!泰勒的特殊形式!再问:好的!谢谢呀

求极限:1、limx→﹢∞e^x-e^-x/e6x+e^-x:2、limx→0x-arcsinx/x^3:3、limx→

1.上下同乘e^-x2.lim(x→0)(x-arcsinx)/x^3 (0/0,洛必达法则)=lim(x→0)[1-1/√(1+x^2)]/(3x^2)(通分)=lim(x→0)[√(1+x^2)-