已知o的半径为2,弦ab的长为2倍根号3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:52:40
已知:⊙O半径OA=1,弦AB、AC长分别为2

如图,过点O作OE⊥AB,OF⊥AC,垂足分别为E,F,∵AB=2,AC=3,∴由垂径定理得,AE=22,AF=32,∵OA=1,∴由勾股定理得OE=22,OF=12,∴∠BAO=45°,∴OF=12

已知圆O的半径为6,弦AB的长为6倍的根号3,则弦AB所对的圆心角的度数为?

过O点作AB的垂线交AB于D.则AD=3根号3,所以sin角AOD=根号3/2,所以角AOD=60度,所以角AOB=120度

已知AB是圆O的直径,弧AC的度数为60°,如果圆O的半径为2cm,那么弦AC的长为?

OA=OC=半径,角AOC=60°三角形OAC就是等边三角形AC弦=2

已知圆O的半径10cm,弦AB长为12cm.求弦AB的弦心距?

解直角三角形,半径为斜边,半个弦长为直角边弦心距等于根号下r方减半弦长的平方d2=100-36d=8

弦AB把圆周分成1:2的两部分,已知圆O的半径为1,求弦AB的长

AB把圆周分成1:2的两部分则AB所对的较小的圆心角为120°过O做NN⊥AB△OAN中∠A=30°AN=√3/2,AB=√3

如图,已知圆O的半径为r,弦AB垂直平分半径OC,则弦AB长为

勾股定理得,r^2=1/4r^2+(1/2ab)^2所以 (1/2ab)^2=3/4r^2所以1/2ab=二分之根号3倍的r所以ab=根号3倍的

1、已知圆O半径为5,则垂直平分半径的弦长为-

1、2*(开根号18.75)2、半径=2

已知圆O的半径为r,弦AB的长也是r,求∠AOB的度数

弦AB的长是r,半径也是r,那么AB和两条半径就可以组成一个等边三角形,所以角AOB=60度

已知圆O的半径OA长为5,弦AB的长为8,C为AB的中点,点P是射线AO上一点

第一个问题:过C作CE∥AO交BO于E.∵CE∥AO、AC=BC,∴CE=AO/2=5/2、BE=EO=BO/2=5/2,∴DE=EO-DO=5/2-DO.∵CE∥OP,∴△CED∽△POD,∴CE/

已知,在圆O中,弦AB的长是半径是半径OA的根号3倍,圆O的直径为2,C为弧AB的中点,求四边形O

很高兴为您解答.可知:则AD=BD=(r根号3)/2直角三角形AOD中解得OD=r/2因此OD=DC=r/2所以四个直角三角形AOD,BOD,ADC,BDC全等所以四条边相等所以为菱形则面积=根三/2

已知圆O的半径为5,弦AB的长也是5,求圆心O到AB的距离

如图,连结OAOB∵AB=AO=BO∴等边△BAO∴∠DAO=60°∵AO=5∴OD=2分之5倍根号3不懂接着问我再问:图呢再答:

已知圆O的半径为4,弦AB的长等于半径,则圆心O到AB的距离

运用弦于圆心的关系,过圆心做弦的垂线,求的O到AB的距离为2倍的根号3

已知:圆O中,半径OC垂直直径AB,弦BE过OC中点D,若圆O半径为4厘米,求BE的长.

根号5分之16利用三角形相似性连接EA,则三角形BDO和BAE相似则:BD/AB=OB/BEBD利用勾股玄定理求得是2倍根号5则BE==AB*OB/BD=32/2倍根号5==根号5分之16

已知半径为10的圆O中,弦AB的长为10.

(1)由⊙O的半径r=10=AB,知△AOB是等边三角形,∴α=∠AOB=60°=π3.(2)由(1)可知α=π3,r=10,∴弧长l=α•r=π3×10=10π3,∴S扇形=12lr=12×10π3

已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,则⊙O的半径是(  )

根据垂径定理,得半弦长是4cm.再根据勾股定理,得其半径是5cm.故选C.

已知圆O半径为1,弦AB、AC长为根号2,根号3,则角BAC的度数为?

连OA、OBOA=OB=1so,OA:OB:AB=1:1:根号2so,∠OAB=45°作OD⊥于ACso,AD=二分之根号3因为OA=1所以∠OAD等于30°so,∠CAB=45°+30°=75°

如图,已知圆O的半径长6cm,弦AB与半径OC互相平分,交点为M,求AB的长

/>设AB与OC的垂足为P点,连OA,如图  ∵弦AB垂直平分OC  ∴PA=PB,OP=PC  而⊙O的半径OC为6cm  ∴OP=3,而OA=6,  AP=√6^2-3^2=3√3   

已知圆O的半径为根号2,弧AB=90度,求弦AB的长

连结弧两端与圆心,构成一三角形,弧=90度,圆心角=90度,三角形为直角三角形因半径相等,可根据勾股定理算得2*R2=AB2AB=2

1.已知圆O的半径为R,弦AB的长也是R,则∠AOB= ( )

1.60度2.OA=AB=OB,三角形OAB是等边三角形,O到AB的距离就是三角形OAB的高,为根号3/2×5=(5/2)倍根号3cm等边三角形,∠AOB=60度3.从O向MN做垂线,交于点A,则MA