已知yz zx xy=1 ,确定的z(x,y) ,求dz

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:58:08
已知方程yz+zx+xy=1确定了一个二元函数z=z(x,y),求dz

先对x求导y*dz/dx+z+x*dz/dx+y=0所以dz/dx=-(z+y)/(x+y)同理得dz/dy=-(z+x)/(x+y)所以dz=-(z+y)/(x+y)dx-(z+x)/(x+y)dy

已知复数z且|z|=1,则|z-2-2i|的最小值是(  )

∵|z|=1,则z对应的点Z在以原点为圆心,以1为半径的圆上,如图,∴|z-2-2i|的最小值是复数2+2i对应的点(2,2)到原点的距离减去半径1,即22+22−1=22−1.故选B.

13.已知二元隐函数z=z(x,y)由方程sinz-yz^2=1-2xyz确定,求全微分dz

因为z=z(x,y),所以全微分是dz=P(x,y)dx+Q(x,y)dy的形式,其中P(x,y)=∂z/∂x,Q(x,y)=∂z/∂y等式两边同时对x

z是由方程x/z=in z/y确定的隐函数,求z的偏x导

你好:两边同时对x求偏导数(z-x(偏z/偏x))/z2=1/z(偏z/偏x)所以偏z/偏x=z/(x+z)

已知函数z=f(x,y)由方程xyz=e^xz所确定,试求z=(x,y)的全微分dz.

方程两边对x求偏导:yz+xyəz/əx=(z+xəz/əx)e^xz得:əz/əx=(ze^xz-yz)/(xy-xe^xz)方程两边对y

设Z=Z(X,Y)是由方程Z*Z-2XYZ=1确定的隐函数,求全微分dz

设F(x,y,z)=z^2-2xyz-1则Fx=-2yz,Fy=-2xz,Fz=2z-2xyαz/αx=-Fx/Fz=-(-2yz)/(2z-2xy)=yz/(z-xy)αz/αy=-Fy/Fz=xz

已知复数z满足|z|=1,则|z+iz+1|的最小值为 ___ .

设z=cosx+sinx,|z+iz+1|=[1+2cos(x+π4)]2+2sin2(x+π4)  =3+22cos(x+π4)≥3-22=2-1.当x3π4时取得最小值2-1.

已知复数Z满足Z+1/Z∈R,且(Z-2)的模=2,求Z

设z=x+yiz+1/z=(x+yi)+1/(x+yi)=(x+yi)+(x-yi)/(x²+y²)=x+x/(x²+y²)+[y-y/(x²+y&s

设Z=f(xz,z/y)确定Z为x,y的函数求dz

f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(

由方程cos²x+cos²y+cos²z=1所确定的函数z=z(x,y,z),求二元函数的

两边求微分就行了2cosx*sinx*dx+2cosy*siny*dy+2cosz*sinz*dz=0dz=-(2cosx*sinx*dx+2cosy*siny*dy)/2cosz*sinz

已知|Z-1|=2,arg(Z-1)的3Pi/2,求复数Z

已知|Z-1|=2,arg(Z-1)的3π/2,求复数Z--->Z-1=2[cos(3π/2)+isin(3π/2)]=-2i--->Z=1-2i

已知复数z满足z·z的共轭+(1-2i)z+(1+2i)z的共轭=3,求|z|的最值

设z=a+bi(a,b是实数)原式即a^2+b^2+2a+4b=3=0,t>0,t>=2根2-根5.

设函数z=z(x,y)由方程2sin(x+2y-3z)=x+2y-3z所确定,求证z对x的偏导加上z对y的偏导等于1

公式输入了好半天,希望可以看懂哈!另外,可以不用辅助函数,直接利用已知等式计算求导.

22.已知二元隐函数z=z(x,y)由方程z^2+yz=1-xsiny确定,求全微分dz

2zdz+zdy+ydz=-sinydx-xcosydydz=[-sinydx-(xcosy+z)dy]/(2z+y)再问:不是先等式两边同时对x求偏微分再对y求偏微分吗?再答:偏微分和全微分的概念不

已知复数z=1-i,则z-1分子z的平方等于多少

原式=(1-i)²/(1-i-1)=(1-i)²/(-i)=i(1-2i+i²)=i+2-i=2

已知复数z=1-i,则|z- z的共轭复数|的值为

复数z=1-i,则z的共轭复数=1+i∴|z-z的共轭复数|=|(1-i)-(1+i)|=|-2i|=2

已知复数Z=1+i,求Z的模|Z|,Z的幅角主值aryZ

|z|=√(1+1)=√2z=√2(√2/2+i√2/2)=√2(cos45°+isin45°)所以辐角主值aryZ=45°

已知复数Z满足|Z|=1,u=1+Z^2,求|u|的最大值

设z=cosA+isinAu=1+(cosA+isinA)²=1+cos²A-sin²A+i*2sinAcosA=(1+cos2A)+isin2A|u|²=(1

已知z是虚数,证明z+1\z为实数的充要条件是|z|=1

z+1\z为实数z+1/z=z'+1/z'zzz'+z'=zz'z'+z(z-z')(zz'-1)=0而z是虚数,z≠z',因此(z-z')(zz'-1)=0zz'=1|z|=1其中z'表示z的共轭