已知{an}是各项均为正数的等比数列,求证{根号an}是等比数列
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:15:49
正数项等比数列an/an-1=q,q>0根号an/根号an-1=根号q,所以{根号an}仍是等比数列.
是原数列是a1a1qa1q^2a1q^3a1q^4.根号an根号a1(根号a1)*(根号q)(根号a1)*q(根号a1)*(根号q)*q.任意相邻两项比值为是根号q因为原来q是等比数列公比,根号q不会
是{an}是各项均为正数的等比数列q大于0{根号an}是以根号a1为首项根号q为公比的等比数列
.{An}为正数等比数列.那么等比数列的通项公式是:An=A1×q^(n-1)将两边同时开方等式仍然相等.An^1/2=(A1^1/2)×[q^(n-1)]^1/2即
在等比数列中有a5a6=a4a7=a3a8=a2a9=a1a10所以有log3a1+log3a2+...+log3a10=log3(a5a6*a4a7*a3a8*a2a9*a1a10)=5log3a5
(1)根据题意,设公差为d则a3=a1+2d=2d+1a9=a1+8d=8d+1有(2d+1)^2=8d+1d=1故通项:an=n(2)根据题意,设公比为q则b2=qb3=q^2有q-0.5q^2=0
依题意,q>0a3a4=(a1·q的平方)(a2·q的平方)=a1a2·q的4次方于是,q的4次方=16,所以,q=2a1a2=a1的平方·q=2解得,a1=1所以,an=1·2的(n-1)次方=2的
∵点(an,sn)在直线y=1/2(x2+x)上∴Sn=1/2(an^2+an)∴an=Sn-S(n-1)=1/2(an^2+an)-1/2(a[n-1]^2+a[n-1])即1/2(an^2-an)
∵(an+1)²-an+1×an-2an²=0∴(an+1+an)(an+1-2an)=0∴an+1-2an=0,an+1+an=0(舍去)∴an+1=2an∴an是等比数列,设a
可用递推法:2Sn=An+An*An递推2Sn-1=An-1+An-1*An-1两市相减,得:An+An-1=An*An-An-1*An-1因为An为正数,所以An-An-1=1之后求An,然后用求和
当n=1时,S1=a1=1/2(a1^2+a1),解得a1=1当n>1时,an=Sn-S(n-1)=1/2(an^2+an)-1/2[a(n-1)^2+a(n-1)],整理得[an+a(n-1)][a
(1)当n=1时,a1=s1=14a21+12a1−34,解出a1=3,又4Sn=an2+2an-3①当n≥2时4sn-1=an-12+2an-1-3②①-②4an=an2-an-12+2(an-an
a1+a2+...+an=(1/2)(an²+an)a1+a2+...+a(n-1)=(1/2)(a(n-1)²+a(n-1))两式相减得an=(1/2)(an²+an)
1.A(n+1)^2*An+A(n+1)*An^2+A(n+1)^2-An^2=0两边同除以A(n+1)²An²1/An+1/A(n+1)+1/An²-1/A(n+1)&
n>=2时,S[n]=1/4*(a[n]+1)^2;S[n-1]=1/4*(a[n-1]+1)^2两式相减得到a[n]=1/4*(a[n]^2+2a[n]-a[n-1]^2-2a[n-1])化简得到a
由等比数列的性质知,a1a2a3,a4a5a6,a7a8a9成等比数列,所以a4a5a6=52.故答案为52
n=an^2+2nan把bn看成2个数列,分别求和既然an是等比,则an^2还是一个等比数列,等比数列求和数列2nan,即n^2^n,可以用到错位相减法求和
log2A(n+1)=log2An+1=log2[2An],则:A(n+1)=2An,则[A(n+1)]/[An]=2=常数,则数列{An}是以A1=1为首项、以q=2为公比的等比数列,得:An=2^
由题意知2an=Sn+1/2,an>0,当n=1时,2a1=a1+1/2,解得a1=1/2,当n≥2时,Sn=2an-1/2,S(n-1)=2a(n-1)-1/2,两式相减得an=Sn-S(n-1)=