已知二元函数z=x^y ,则dz(2,1)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:12:21
∂z/∂x=2xy∂z/∂u=x²所以dz=2xydx+x²dy
1.3y²zdy+y³dz=cosxdx-e^xdz整理:(y³+e^z)dz=cosxdx-3y²zdydz=[cosx/(y³+e^z)]dx-[
先对x求导y*dz/dx+z+x*dz/dx+y=0所以dz/dx=-(z+y)/(x+y)同理得dz/dy=-(z+x)/(x+y)所以dz=-(z+y)/(x+y)dx-(z+x)/(x+y)dy
z'x=2e^(2x+y)z'y=e^(2x+y)所以dz=2e^(2x+y)dx+e^(2x+y)dy
因为z=z(x,y),所以全微分是dz=P(x,y)dx+Q(x,y)dy的形式,其中P(x,y)=∂z/∂x,Q(x,y)=∂z/∂y等式两边同时对x
先问一下,ln/y是要表达什么意思?先不论题目,说明一下一般解法dZ=Zx*dx+Zy*dy(其中Zx表示Z(x,y)对x求偏导.)然后对“x=z*ln/y”使用隐函数求导法则,求出Zx与Zy,代入即
先求z对x的偏导数,z为函数,x,y为自变量等式两边对x求偏导:(以下的F后面的数字1、2、3均为下标,d为偏导数符号)F1'+F3'*dz/dx=0,解得:dz/dx=-F1'/F3'(1)求x对y
∂z/∂x=cos(x-y)∂z/∂y=-cos(x-y)dz=∂z/∂x*dx+∂z/∂y*dy=co
f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(
dz=[-3ysin3xy+1/(1+x+y)]dx+[-3xsin3xy+1/(1+x+y)]dy
z偏x=-sin3xy*3y+1/(x+y+1)z偏y=-sin3xy*3x+1/(x+y+1)dz=[-sin3xy*3y+1/(x+y+1)]dx+[sin3xy*3x+1/(x+y+1)]dy
等于2y 啊,问题就是说对x,y分别求偏导啊,在你现在遇到的题里面,先对x求偏导再对y求偏导和先对y求偏导再对x求偏导是一样的.根据前面全微分的式子,你可以选择对把y^2对y求导是2y,或者
他说的方法对但算的好像不对,高数扔好久了,我试试哈,dz=y*(1/x^2)*e^(y/x)*dx+(1/x)*e^(y/x)*dy.另外,我不知道是不是你手误,我给出的答案是按照z=e^(y/x)算
e^x(1/y1)x^(y1)再问:亲,经多方证实你的答案是错误的,不过你是唯一回答我的人,我还是采纳了
http://hi.baidu.com/fjzntlb/album/item/ef8139f61e7f7842730eec56.html#
f(x)=z=x+y/x-ydz=fxdx+fydy=[[(x-y)-(x+y)]/(x-y)^2]dx+[[(x-y)+(x+y)]/(x-y)^2]dy=-2y/(x-y)^2dx+2x/(x-y
dz/dx=dz/du*(du/dx)=2u*1=2udz/dy=dz/du*(du/dy)=2u*1=2u和v没关系
2zdz+zdy+ydz=-sinydx-xcosydydz=[-sinydx-(xcosy+z)dy]/(2z+y)再问:不是先等式两边同时对x求偏微分再对y求偏微分吗?再答:偏微分和全微分的概念不
这类题目有两种方法,不过严格的说是一种方法,只是理解的方向不同.且说是两种方法吧.1、分别将式子对x,y求偏导数,然后整理式子就可可以得到答案了.z^x*ln(z)+x*z^(x-1)*z[x]=y^