已知企业的短期总成本函数,求最小的平均可变成本值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:02:49
STC'=0.12Q^2-1.6Q+10令STC'=0求得Q=?STC极值点把极值点Q=?带入比较求的SAC取最小值时Q的取值.
AC(Q)=TC(Q)/Q=0.04Q2-0.8Q+10+5/QAC(Q)=AVC(Q)+AFC(Q)则AVC(Q)=0.04Q2-0.8Q2+10AFC(Q)=5/Q当Q=0.8/(2*0.04)=
由STC可得TVC=Q3-14Q2+69Q,SMC=3Q2-28Q+69,AVC=Q2-14Q+69.因为短期供给曲线是SMC曲线上大于和等于AVC曲线最低点的部分,则SMC=AVC可得Q=7.所以S
由STC可得TVC=Q3-14Q2+69Q,SMC=3Q2-28Q+69,AVC=Q2-14Q+69.因为短期供给曲线是SMC曲线上大于和等于AVC曲线最低点的部分,则SMC=AVC可得Q=7.所以S
利润最大化mr=mc因为是完全竞争所以mr=pmc=2q2,q=1.5,利润最大化时的利润=收入-成本,结果自己算吧..
我只能给你做两道题,因为这么多题目太花时间了,其余的你自己做吧.这些题目都是非常简单的题目,自己练练也好.有什么难题可以加我QQ:77970217,但我不希望你什么问题都依赖别人.另外,我建议你今后问
由反需求函数为P=8-0.4Q得到利润函数曲线为P=8-0.8Q而单位成本(即供应曲线)为STC/Q=0.6Q+3+2/Q两条曲线的交点就是该垄断厂商短期内选择生产量的位置此时均衡产量=Q=3.1(另
由STC,解的MC=0.3Q^2-12Q+140.由P=150-5Q得TR=150Q-5Q^2,得MR=150-10Q.均衡时MC=MR,解得Q=10.2、Q=10时,解得P=1003.利润π=TR-
(P=a-bQ)均衡条件:MR=SMC即a-2bQ=SMC,SMC=d(STC)/dQ=0.3Q^2-12Q+140=MR=150-2*3.25Q得到Q=20
短期均衡产量Q=20均衡价格P=20
这题是求平均可变成本与短期边际成本的关系,短期边际成本SMC(Q)与短期总成本STC(Q)的关系,平均可变成本AVC(Q)与总可变成本TVC(Q)的关系.短期边际成本穿过平均可变成本的最低点,因此解出
SMC=8+2y;avc=8+y;由于短期供给曲线是SMC线上大于AVC最低点的部分,即SMC=AVCy=0,所以短期供给曲线为s=8+2yy>=0
avc=(stc-tfc)/q,afc为固定成本
平均可变成本AVC=STC/Q=0.04Q^2-0.8Q+10+5/QQ为正整数,二次函数0.04Q^2-0.8Q+10的最小值出现在Q=10处,而Q>5后5/Q对函数取值的影响不超过1,因此AVC的
可变成本为TVC=0.04Q3-0.8Q2+10Q不变成本为TFC=5平均可变成本AVC=TVC/Q=0.04Q2-0.8Q+10=0.04(Q-10)2+6则当Q=10时取最小的平均可变成本MinA
平均总成本TAC(q)=C(q)/q=(100+2q+q2)/q=100/q+2+q可变成本VC(q)=2q+q2则平均可变成本AVC(q)=VC(q)/q=(2q+q2)/q=2+q
分别用Q对K和L求导算出各自的边际生产率,然后根据边际生产率与要素价格之比相等,以及总成本约束建立方程组,解出来就行了
平均可变成本AVC=STC/Q=0.04Q^2-0.8Q+10+5/QQ为正整数,二次函数0.04Q^2-0.8Q+10的最小值出现在Q=10处,而Q>5后5/Q对函数取值的影响不超过1,因此AVC的
AVC=STC/Q=0.04Q^2-0.08Q+10是平均可变成本函数,呈现U型,有一个最小值.数学问题求极值,求导数令其等于零:0.08Q-0.08=0,得Q=1.
/>对生产函数整理后可得:L=(1/10^4)Q^4/(K-25)企业总成本即为:TC=Wl+Rk=(1/100)Q^4/(K-25)+400K此即为短期成本函数.长期情形下,k可变动,成本极小化的条