已知关于x的方程x2 3x a=0两个实数根的倒数之和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:52:50
∵x=2是方程3a-x=x2+3的解,∴3a-2=1+3解得:a=2,∴原式=a2-2a+1=22-2×2+1=1.
x²+2x+m=0(x+1)²=(1-m)=(m-1)i²(其中,i²=-1)x+1=±(√(m-1))ix=±(√(m-1))i-1又因为|α|+|β|=4,
解题思路:由条件中的两个等量关系可直接求得方程两根,再用代入法或根与系数的关系证明出a=b=c.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("
已知关于x的方程x²-5x-1=0,求(1)x+1/x的值.因为x不为0,方程两边同时除以x,得,x-5-1/x=0,x-1/x=5,平方,得,x^2-2+1/x^2=25,x^2+1/x^
x^2-(k+2)x+2k=0△=(k+2)^2-8k=k^2+4k+4-8k=k^2-4k+4=(k-2)^2≥0所以无论k取任何实数值,方程总有实数根另两边长恰是这个方程的两个根则x1+x2=k+
反对上面的,因为M>0所以0和-2舍去这题是讨论的.因为(m-1)x+2m=5且m>0所以0<X<5又因为有整数解所以把0<X<5的数一一列出得1.2.3.4当X=1时,M=2当X=2时M=4/7舍当
∵sinQ+cosQ=(√3+1)/2sibQcosQ=m/2∴1+2xm/2=(√3+2)/2∴m=√3/2原式=(sin²Q-cos²Q)/(sinQ+COSQ)=sinQ-c
证明:(1)∵△=b^2-4ac=(k+2)^2-8k=(k-2)^2≥0,∴无论k取任意实数值,方程总有实数根.(2)分两种情况:①若b=c,∵方程x^2-(k+2)x+2k=0有两个相等的实数根,
1.Δ=(-(k+2))²-4*2k=k²+4k+4-8k=(k-2)²>=0恒成立,所以方程总有实数根.2.x=(k+2±(k-2))/2x1=k,x2=2等腰三角形:
△=〔-(2k+1)〕^2-16(k-0.5)=4k^2+4k+1-16k+8=4k^2-12k+9=(2k-3)^2不论k取何值,都有△=(2k-3)^2所以方程总有实数根当b,c为腰长时,说明方程
设f(x)=x2+(12-2m)+m2-1,对称轴为x=m-14,△=(12−2m)2-4(m2-1)=174-2m,f(0)=m2-1,f(2)=m2-4m+4=(m-2)2,由题意得:△≥00≤m
由于x1x2=1/4k^2+1>0所以x1=x2>0于是得到2x1=k+1x1^2=1/4k^2+1解得k=3/2再问:那下面的人说的K=-1呢?我是这么做的:①X1=X2,△=0,则2K-3=O,K
因为X的方程X²-3X-K=0有两个不等式根,则b平方减4ac大于0,1为a,-3为b,-k为c.带进等式.9+4k>04K>-9k>-(9/4)k最小整数解为-2(这不是初三二元一次函数根
是a是关于x的方程x²-x-1=0的一个根a²-a-1=0a-1-1/a=0a-1/a=1a²-a-1=0a³-a²-a=0a³-2a&su
²-4ac=(a+2)²-8a=a²+4a+4-8a=a²-4a+4=(a-2)²>=0∴方程总有两个不相等的实数根当a=1时x²-3x+2
(1)(k+2)^2-8k>=0k^2-4k+4=(k-2)^2>=0成立(2)i>a是腰长则设b也是腰长a=1b=1所以1-k-2+2k=k-1=0k=1x^2-3x+2=0(x-2)(x-1)=0
解方程2x+12=6x-2得:x=12;因为方程的解互为倒数,所以把x=12的倒数2代入方程x-m2=x+m3,得:2-m2=2+m3,解得:m=-65.故所求m的值为-65.
方程判别式△=[-2(m+1)]²-4·4·m=4m²-8m+4=4(m-1)²恒≥0,方程恒有实根.设两根分别为x1,x2,由韦达定理得x1+x2=2(m+1)/4=(
2x²-3x+m+1=0m