已知函数f(x)=(x² 2x a) x,x∈[1, ∞)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:44:44
已知函数f(x)=lg(1+2^x+3^x+5^xa)对x∈(-∞,2)恒有意义,求实数a的取值范围?

由题意可知1+2^x+3^x+5^x*a>0a>-(1+2^x+3^x)/5^xa>-[(3/5)^x+(2/5)^x+(1/5)^x]设f(x)=(3/5)^x+(2/5)^x+(1/5)^x在∈(

高二导数习题 已知函数y=f(x)的图象如图,则f'(xA)与f'(xB)的大小关系是

A,望采纳AB点处的导数均为负值,而B点处斜率较大,到数值较小

已知分段函数f(x)=x/2-1(x≥0),1/x(xa,求a的取值范围

分段函数分段解决  当aa  存在1/a>a  a^2a  1/2a^2-a>0  解得a2当a

已知定义域为R的函数f(x)=1−2xa+2x+1是奇函数.

(1)由题意可得函数的定义域是R且函数是奇函数,把f(-1)=-f(1),代入可得:a=2.(2)由(1)可得f(x)=1−2x2+2x+1在它的定义域是R是减函数,且是奇函数,则不等式f(mt2+1

已知函数y=f(x)的图像如图所示,则f'(xA)与f'(xB)的大小关系是?A.f'(xA)>

选择B通过斜率看还有注意一点就是这里的两个选项都是负的,所以不能单单看图再问:什么叫做这两个选项都是负的?为什么?再答:因为过他们两点的斜率都是过二四象限都是负的,所f'(xA)与f'(xB)的值也是

已知对于x的所有实数值,函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求关于x的方程xa+2

依题意可知△=16a2-4(2a+12)≤0,解得-32≤a≤2.由xa+2=|a-1|+2可得x=(a+2)(|a-1|+2),当1≤a≤2时,x=(a+2)(|a-1|+2)=a2+3a+2,单调

已知幂函数f(x)=xa的图象过点(12

∵幂函数f(x)=xa的图象过点(12,22),∴(12)α=22,解得α=12,∴函数f(x)=x12;∴不等式f(|x|)≤2可化为|x|12≤2,即|x|≤2;解得|x|≤4,即-4≤x≤4;∴

已知非零向量a,b,满足a垂直于b,则f(x)=(xa+b)²是什么函数

展开得f(x)=|a|^2*x^2+2a*b*x+|b|^2,由于a丄b,因此a*b=0,所以函数化为f(x)=|a|^2*x^2+|b|^2,没有一次项,因此是偶函数.选D.

已知幂函数f(x)=k*xa的图像过点(1/2,根号2/2),则k+a=?

由幂函数的定义知k=1(系数必须为1)故f(x)=x^a图像过点(1/2,√2/2)代入解析式得(1/2)^a=√2/2所以a=1/2结果是3/2

已知向量a=(2cosx,cos2x),b=(sinx,根号3),函数f(xa*b),若f(x)=6/5,x属于0到2π

f(x)=2cosx*sinx+根号3cos2x=sin2x+根号3cos2x=6/5①再利用sin2x+co2x=1②联立①②解出cox2x(因为x属于0到2π,所以2x属于0到4π)

方程f(x)=x的实根x0叫做函数f(x)的不动点,则f(x)=xa(x+2)(x∈R,a≠0)有唯一不动点,数列{an

由题意,∵f(x)=xa(x+2)(x∈R,a≠0)有唯一不动点∴xa(x+2)=x有唯一解,∴x=0,a=12∴f(x)=2xx+2∴an+1•f(1an)=an+1•21+2an=1∴an+1-a

若幂函数的解析式为f(x)=(a-2)xa,则a=______.

由幂函数的定义知a−2=1a∈R,解得a=3.故答案为:3.

已知函数f(x)=((2a+1)/a)-(1/(xa^2)),常数a>0

(1)所给函数f(x)=((2a+1)/a)-(1/(xa^2))=2+1/a-1/a^2*1/x,是b-c/x(b、c>0)的形式,增减性用定义自己算一下应该不难.(2)根据单调性有,f(m)=m,

已知函数f(x)的定义域为x∈[-12,32],求g(x)=f(ax)+f(xa)(a>0)的定义域.

设μ1=ax,μ2=xa,其中a>0,则g(x)=f(μ1)+f(μ2)且μ1、μ2∈[-12,32].∴-12≤ax≤32-12≤xa≤32⇒-12a≤x≤32a-a2≤x≤32a①当a≥1时,不等

设函数f(x)={x/2-1 (x大于等于0) 1/x (xa,求a的取值范围

当x>=0时x/2-1>x得:-1>x/2-1/2>x与x>=0无交集,所以无解当xx得:1得:x1x<-1与x1与x

已知函数f(x)=根号(1+2^x+3^xa)的定义域为(-无穷,1],求a的取值范围

把x=1代入根号内的值应为0a=-1分析方法:一、指数函数为单调函数二、当a>=0,x定义域为R三、两个指数函数的变化率不一样

如果幂函数f(x)=xa的图象经过点(2,22)

由题意f(2)=2a=22=2−12,所以a=-12,所以f(x)=x−12,所以f(4)=4−12=12故答案为:12

已知函数f(x)= x-x^2,x

x=5时,f(x)=f(x-2)从而任何x>=5的值都是化成xf(8)=f(8-2)=f(6)=f(6-2)=f(4)=4-4^2=-12再问:�Ҳ����װ�f8Ϊʲô����f8-2再答:����