已知函数f(x)=2lnx-ax的平方 3,若存在实数m,n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:26:59
已知函数f(x)=lnx+a/x-2 g(x)=lnx+2x

①f'=1/x-a/x^2=(x-a)/x^2定义域为x>0.当a0,g(x)单增;g''=-1/x^2

已知函数fx)=lnx+a/x,若f(x)

设g(x)=x^2-f(x)求g'(x)=2x-1/x+a/x^2通分有g'(x)=(2x^3-x+a)/x^2考虑其在(0,+∞)上单调性若2x^3-x+a>=0则g(x)最小值满足g(x)>0即可

已知函数f(x)=-a/x+lnx

1、f'(x)=a/(x^2)+1/x=(x+a)/x^2当a>=0时,x在(0,正无穷)上递增,当a=0,a

已知函数f(x)=x|lnx-a|

(1)因为a=3所以f(x)=x|lnx-3|,x>0当x∈(0,e³)时,f(x)=3x-xlnxf′(x)=3-lnx-1=2-lnx令f′(x)

已知函数f(x)=ax+lnx(a∈R).

(1)由已知f′(x)=2+1/x(x>0),∴f'(1)=2+1=3.故曲线y=f(x)在x=1处切线的斜率为3.(2)求导函数可得f′(x)=a+1/x=ax+1/x(x>0).当a<0时,由f'

已知函数f(x)=lnx+ax+(a+1)/x

解题思路:)当a>-1/2时,讨论函数单调性2)当a=1时,若关于x的不等式f(x)≥m^2-5m-3恒成立,求m的取值范解题过程:

已知函数f(x)=lnx+2x,g(x)=a(x^2+x)

f(x)>=g(x)即(lnx+2x)/(x^2+x)≥a令h(x)=(lnx+2x)/(x^2+x)h'(x)=(lnx-x+1)(2x+1)/(x^2+x)^2令h'(x)=0x=1列表略易知h(

已知函数f(x)=lnx+2x,g(x)=a(x2+x)..

解题思路:f(x)≤g(x)恒成立,构造新函数F(x)=f(x)-g(x),则F(x)≤0恒成立,求导函数,是的F(x)的最大值小于0,就可以求出实数a的取值范围解题过程:

已知函数f(x)=lnx+a/x,当a

1、定义域为:(0,+00)当a

已知函数f(x)=(a+1)lnx+ax2+1

原函数f(x)=(a+1)lnx+ax^2+1,已知:ax2,且x>0.原函数的导函数f'(x)=(a+1)/x+2ax.因为a0得:f'(x)0对于不等式|f(x1)-f(x2)|>=4|x1-x2

已知函数f(x)=x^2-lnx,h(x)=x^2-x+a

k(x)=2x^2-x+a-lnx求导在[1,3]内有一个零点q,k(q)0,k(3)>0

已知函数f(x)=x-2/x,g(x)=a(2-lnx),a>0,

(1)对f(x)、g(x)分别求导得:f(x)'=1+2/x²;g(x)'=-a/x;根据斜率相等带入x=1得1+2=-a即a=-3;所以g(x)=-3*(2-lnx)=3lnx-6x=1时

已知函数f(x)=lnx-ax(a属于R)

1.可求得直线x-y+1=0斜率k=1由垂直可以得出k*k'=-1故k'=-1求f(x)的导数可得f'(x)=1/x-a当x=1时f'(x)=-1故a=22.由已知可得f(x)=lnx-2x故f'(x

已知函数f(x)=ax+lnx(a∈R)

(1)a=2,f(x)=2x+lx,f'(x)=2+1/x∴f(1)=2,切点(1,2),切线斜率k=3设y=kx+b,由上可知:b=-1切线方程为y=3x-1(2)f'(x)=a+1/x=(ax+1

已知函数f(x)=ax+lnx(a属于R)

f(x)=ax+lnx(x>0),f'(x)=a+1/x(x>0)若a>=0,则f'(x)>=0,f(x)在定义域上是增函数.若a

已知函数f(x)=lnx-ax(a∈R)

再问:唔……我懂了,谢谢。能帮忙答一下第三问么?再答:

已知函数f(x)=|x-a|-lnx(a>0)

【1解】:f(x)=|x-1|-ln[x],x>0当00,为递增函数,f(x)>f(1);所以,f(x)的最小值为f(1)=0;【2解】:当a>1,由(1)可得:(0,a]递减;[a,无穷)递增;当0

已知函数f(x)=lnx-e∧x+a

此题模仿今年新课标理数21题压轴题,有兴趣可以去对比下(1)f'(x)=1/x-e^(x+a)f'(1)=1-e^(1+a)=01+a=0a=-1∴f(x)=lnx-e^(x-1)f&