已知函数f(x)=2根号3sinxcosx-3sin²x-cos²x 3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:40:56
1,f(x)=sin²x+√3sinxcosx+2cos²x=1-cos²x+√3/2sin2x+2cos²x=cos²x+√3/2sin2x+1=(
已知:函数f(x)=2sinxcosx+2√3cos²x-√3求:(1)单调增区间和最小正周期;(2)当x∈[-π/4,π/4]时求最值.f(x)=2sinxcosx+2√3cos²
f(x)=2sinxcosx+2√3cos²x-√3=2sinxcosx+√3(2cos²x-1)=sin2x+√3cos2x=2sin(2x+π/3)最小正周期T=2π/2=π,
f(x)=√(x+3)+1/(x+2)f(-3)=√(-3+30+1/(-3+2)=√0+1/(-1)=0-1=-1f(2/3)=√(2/3+3)+1/(2/3+2)=√(11/3)+1/(8/3)=
(Ⅰ)∵向量a=(cos2ωx-sin2ωx,sinωx),b=(3,2cosωx),∴f(x)=a•b=(cos2ωx-sin2ωx,sinωx)•(3,2cosωx)=3cos2ωx+sin2ωx
f(x)=2√3sinxcosx-cos2x=√3sin2x-cos2x=2(sin2x*√3/2-cos2x*1/2)=2sin(2x-π/6)x=π/12;函数f(x)的图象可以由函数y(x)=2
F(x)=√(x+3)+1/(x+2)根式≧0,分母≠0则x+3≧0x+2≠0即x≧-3且x≠-2
(I)∵函数f(x)=3sinx•cosx+sin2x=32sin2x+1-cos2x2=sin(2x-π6)+12∴函数f(x)的最小正周期为π; …(5分)由2kπ-π2≤2x-π6≤2kπ+π2
由sin²x+cos²x=1得出的再问:���Ƕ��˸�2��ϵ��再答:��Ϊ֮ǰ��3cos²x再答:sin²x+3cos²x=sin²
f(x)=2根号3sin方x+sin2x+根号3=根号3(2sin方x+1)+sin2x=根号3(1-cos2x+1)+sin2x=2根号3-根号3cos2x+sin2x=2sin(2x-60度)+2
f(x)=2√3sin²x-sin(2x-π/3)=√3-√3cos2x-1/2sin2x+√3/2cos2x=√3-(1/2sin2x+√3/2cos2x)=√3-sin(2x+π/3)T
f(x)=sin2x-2√3(cosx)^2+√3=sin2x-√3(1+cos2x)+√3=sin2x-√3cos2x=2sin(2x-π/3)π/4=再问:π/6=
已知函数f(x)=根号3sin2x+cos2x+21求f(x)的最大值及f(x)取得最大值时自变量x集合f(x)=根号3sin2x+cos2x+2=2[(根号3/2)sin2x+(1/2)cos2x]
f(x)=sinxcosx+√3(cosx)^2-√3/2=(1/2)sin2x+(√3/2)cos2x=sin2xcosπ/3+cos2xsinπ/3=sin(2x+π/3)1.0
已知函数f(x)=根号log1/2(x-1)定义域为集合A,函数g(X)=3的m-2x-x^2次方减1值域为集合B,A∪B=B,求M取值范围f(x)=√log(x-1)的定义域是:由log(x-1)≥
1:(sinwx)^2+√3sinwxsin(wx+π\2)=(sinwx)^2+√3sinwxcoswx=2[(sinwx)^2+(√3\2)sin2wx]\2=[2(sinwx)^2+√3sin2
f(x)=cosx+sinx=√2(√2/2*sinx+√2/2cosx)=√2(sinxcosπ/4+cosxsinπ/4)=√2sin(x+π/4)所以:f(x)的最大值=√2f(a)=cosa+
2cos^2-1=cos2xcos^2=(1+cos2x)/2f(x)=sinxcosx-(根号3)cos^2+(根号3)/2=sin2x/2-根号3*(cos2x+1)/2=sin2x/2-根号3*