已知函数f(X)=cosx根号1 sinx分之
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 23:24:10
已知:函数f(x)=2sinxcosx+2√3cos²x-√3求:(1)单调增区间和最小正周期;(2)当x∈[-π/4,π/4]时求最值.f(x)=2sinxcosx+2√3cos²
f(x)=2cosx(cosx+根号3sinx)=2cos^2x+2*根号3sinx*cosx=cos2x+根号3sin2x+1当cos2x=1/2sin2x=根号3/2有最大值3当cos2x=-1/
因为:函数f(x)=2cosx·sin(x+π/3)-√3(sinx)^2+sinx·cosx=2cosx·sin(x+∏/3)-√3(sinx)^2+sinx·cosx=2cosx·sinx·cos
(1)f(x)=(1/2)sinx+(√3/2)cosx=sin(x+π/3)最小正周期=2π值域=[-1,1](2)f(A)=√3/2sin(A+π/3)=√3/2A+π/3=2π/3A=π/3a=
(1)f(t)=√[(1-t)/(1+t)]f(sinx)=√[(1-sinx)/(1+sinx)]f(cosx)=√[(1-cosx)/(1+cosx)]g(x)=cosx*f(sinx)+sinx
y=f(x)=(sinx)平方-根号3sin(pai+x)*cosx=(1/2)(1-cos2x)+根号3sinxcosx=(√3/2)sin2x-(1/2)cos2x+1/2=sin(2x-π/6)
(1)f(x)=.2sinx3(sinx−cosx)sinx+cosxcosx.=sin2x+3cos2x=2sin(2x+π3)…(3分)所以函数f(x)的最小正周期为π…(3分)(2)
f(x)=sinx+根号3cosx=2*sin(x+pi/3)1.T=2pi2.x用x-pi/3代替:y=sinx单调增区间:【0,pi/2】
1a·b=√3sinxcosx+cosx^2=√3sin(2x)/2+(1+cos(2x))/2=sin(2x+π/6)+1/2故:f(x)=a·b-1/2=sin(2x+π/6)最小正周期:T=2π
f(x)=sinx+√3cosx=2(1/2sinx+√3/2cosx)=2(cosπ/3sinx+sinπ/3cosx)=2sin(x+π/3)所以最小正周期为:2π振幅为2再答:请采纳哦,谢谢再答
这个简单:f(x)=2cosx(sinxcos(pi/3)+cosxsin(pi/3))-根号33sin^2x+sinx*cosx=2sinxcosx+根号3cos2x=2sin(x+pi/3)所以:
f(x)=2(sinxcosπ/6-cosxsinπ/6)=2sin(x-π/6)-1≤sin(x-π/6)≤1-2≤f(x)≤2值域是[-2,2]
f(x)=√2(sinx-cosx)=2*【sinxcos(-π/4)+cosxsin(-π/4)】=2sin(x-π/4)1)、f(x)的最小正周期为T=2π值域为【-2,2】2)、图像过点(α,6
f(x)=cos²x+√3sinxcosx=1/2(2cos²x-1)+√3sinxcosx+1/2=1/2cos2x+√3/2sin2x+1/2=cos(2x-π/3)+1/2当
1、f(x)=(√3/2)sin2x+(1/2)cos2x=sin(2x+π/6)周期T=2π/2=π当x∈【0,π/2】时,2x+π/6∈【π/6,7π/6】则sin(2x+π/6)∈【-1/2,1
f(x)=sinx+根号3cosx=2sin(x+π/3),即最小正周期为2π得到的g(x)=2sin(x+π/3-π/3)=2sinx,即在(O,π/2】上单调递增,在【π/2,π)上单调递减
f(x)=(1/2)2sinx*cosx+√3*cosx^2=1/2sin2x+√3/2(2cos^2-1)+√3/2=1/2sin2x+√3/2cos2x+√3/2=cos60sin2x+cos2x
f(x)=√3sinxcosx+(cosx)^2+m=sin(2x+π/6)+m+1/21.最小正周期T=2π/2=π2.x∈[-π/6,π/3]2x+π/6∈[-π/6,5π/6]可见x=-π/6时
1、由x范围则cosx>0sin²x+cos²x=1所以cosx=3/5所以f(x)=(4√3-3)/52、f(x)=2(sinx*√3/2-cosx*1/2)=2(sinx