已知函数y=2sin(wx )等于w
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:21:07
f(x)=sinwxcosPai/3+coswxsinPai/3-coswxcosPai/6+sinwxsinPai/6+coswx=sinwx+coswx=根号2sin(wx+Pai/4)T=2Pa
&=π/2,w=2.f(x)=sin(2x+π/2)=cos2x,偶函数,关于点M(3π/4,0)对称,且在[0,π/2]上是单调递减函数.
(1)sin(wx+π/6)=sinwxcosπ/6+coswxsinπ/6sin(wx-π/6)=sinwxcosπ/6-coswxsinπ/6f(x)=sin(wx+π/6)+sin(wx-π/6
cos(π/2-wx)=sin(wx)所以f(x)=sin^2wx+根号3coswxsin(wx)所以=二分之(根号三加二)乘sin^2wx因为相邻两条对称轴之间的距离为π\2所以w=1)求W的值及f
函数f(x)=sin(ωx+φ)(w>0,0≤φ≤π)是R上的偶函数∴f(-x)=f(x)→sin(-wx+φ)=sin(wx+φ)→-sinωxcosφ=sinωxcosφsinωx不恒等于0,∴c
f(-x)=f(x)2sin(-wx+θ)=2sin(wx+θ)若-wx+θ=2kπ+wx+θwx=-kπ不成立因此,-wx+θ=2kπ+π-(wx+θ)θ=kπ+π/2所以,可能是:θ=π/2再问:
解析:∵f(x)=sin(wx+fai)(w>0,-π≤faiT=5π/2==>w=4/5∴f(x)=sin(4/5x+fai)f(3π/4)=sin(3π/5+fai)=-1==>3π/5+fai=
已知函数f(X)=sin^2wx+根号3sinwx*sin(wx+π/2)+2cos^2wx,x属于R,在y轴右侧的第一个最高点的横坐标为π/6,求w;若将函数f(x)的图像向右平移π/6个单位后,再
它是先得出:pi/2〈=ωx
偶函数则x=0是对称轴sin的对称轴是在函数取最值得地方所以sin(0*w+q)=sinq=1或-10
首先得T/2=2π-3π/4=5π/4所以:T=5π/2,即2π/w=5π/2,所以:w=4/5;所以:y=sin(4x/5+A),把点(3π/4,-1)代入,得:-1=sin(-3π/5+A)所以:
f(x)=√3sin(wx+φ/2)*cos(wx+φ/2)+sin^2(wx+φ/2)=(√3/2)sin(2wx+φ)+(1/2)[1-cos(2wx+φ)]=sin(2wx+φ-π/6)+1/2
向右平移4π/3或向左平移2π/3,都关于原点对称sinx两个相邻对称中心距离是T/2所以T/2=4π/3+2π/3=2πT=2πT/w=2π/w=2πw=1
1:(sinwx)^2+√3sinwxsin(wx+π\2)=(sinwx)^2+√3sinwxcoswx=2[(sinwx)^2+(√3\2)sin2wx]\2=[2(sinwx)^2+√3sin2
f(x)=sin^2wx+√3sinwxsin(wx+π/2)=sin^2wx+√3sinwxcoswx=1/2(1-cos2wx)+√3/2sin2wx=√3/2sin2wx-1/2cos2wx+1
因为T=2π/|w|所以w=2又因为sin(3π/2+2Kπ)=-1所以π+y=3π/2+2kπ所以y=π/2+2kπ因为,0
已知函数f(x)=sin(wx+∮)(w>0.0<∮<派)为偶函数,其图像上相邻的一个最高点和一个最低点之间的距离为√(4+派的平方).求f(x)的解析式解析:∵函数f(x)=sin(wx+∮)(w>
第一题A.第二题B