已知前三数是等比数列和是19 ,后三数成等差数列和是12 ,求此四数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:57:36
设原来公比是q√an存在则q>0a(n+1)/an=q则√a(n+1)/√an=√q,所以是等比数列
正数项等比数列an/an-1=q,q>0根号an/根号an-1=根号q,所以{根号an}仍是等比数列.
是原数列是a1a1qa1q^2a1q^3a1q^4.根号an根号a1(根号a1)*(根号q)(根号a1)*q(根号a1)*(根号q)*q.任意相邻两项比值为是根号q因为原来q是等比数列公比,根号q不会
是{an}是各项均为正数的等比数列q大于0{根号an}是以根号a1为首项根号q为公比的等比数列
设公比为q,当q=-1时,等比数列{an}的各项是a,-a,a,-a,a,-a…的形式,a≠0.又已知Sn是实数等比数列{an}前n项和,故当n为偶数时,Sn=0,当n为奇数时,Sn=a,故选D.
直接用S6的平方等于S2乘以S4,再把这几个化成a1乘以公比多少次方的形式,就解出来了,q=1
解题思路:先求出通项an解题过程:最终答案:略
a2=a1qa8=a1q^7a5=a1q^42a8=a2+a52a1q^7=a1q+a1q^42q^6=1+q^32q^6=1+q^32q^6-q^3-1=0(2q^3+1)(q^3-1)=0q^3=
求出首项a1和公比q代入公式就可以了当q≠1时an=a1q^(n-1)sn=a1(1-q^n)/(1-q)当q=1时an=a1sn=na1
首项a2S9=2a(q^9-1)/(q-1)S3+S6=a(a^3-1)/(q-1)+a(a^6-1)/(q-1)2S9=S3+S6显然a不等于02(q^9-1)=a^3-1+q^6-12q^9=q^
S10,21-S10,28成等比数列{bn}.所以x^2-42x+441=28x解得7或63.当S10=63是,bn公比是-2/3.而事实上要求bn的公比是原来数列公比q的10次方,必须是正数.排除6
每10项的和S10,S20-S10,S30-S20成等比数列,现在S20=24,S30=78(S20-S10)^2=S10*(S30-S20)(24-S10)^2=S10*(78-24)S10=6或S
a1+a2+a3+a4=1a1*q^4+a2*q^4+a3*q^4+a4*q^4=a5+a6+a7+a8=1*q^4=16S8=a1+a2+a3+a4+a5+a6+a7+a8=1+16=17
q=2a+aq+aq^2+a^3=1a(1+2+4+8)=1a=1/15S8=a(1-2^8)/(1-2)=a(256-1)=255/15=17
a1+a1q+a1q*q=19,a1=1/3得q=7再问:求过程再答:提出a1,a1(1+q+q*q)=19,带入a1,即1+q+q*q=57,q*q+q-56=0,(q-7)(q+8)=0,q1=7
a3=a1*q^2;a9=a1*q^8;a6=a1*q^5;因为a3,a9,a6是等差数列,所以,2a9=a3+a6.化简,2q^9=q^3+q^6.s3+s6=a1*(1-q^3)/(1-q)+a1
由题意,S9-S3=S6-S9而S9-S3=A4+...+A9S6-S9=-(A7+A8+A9)而(A4+A5+A6)+2(A7+A8+A9)=0A3(Q+Q²+Q²)+2A6(Q
q=2,a=8*2^n-4再问:给我图片可好再答:好吧再答:等一下再答:
设a2=a,a3=aq,a4=aq^2,a5=aq^3,a6=aq^4a2*a4+2a3*a5+a4*a6=a*aq^2+2aq*aq^3+aq^2*aq^4=a^2(q^2+2q^4+q^6)=a^
由题意可得:a11−q=2,|q|<1且q≠0,∴a1=2(1-q),∴0<a1<4且a1≠2,则首项a1的取值范围是(0,2)∪(2,4).故答案为:(0,2)∪(2,4)