已知双曲线c:x2 9-y2 16的左右焦点分别为F1,F2,P为C的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:45:49
∵双曲线C:x2a2−y2b2=1(a>0,b>0)的离心率为233,且过点P(6,1),∴ca=2336a2−1b2=1a2+b2=c2,解得a2=3,b2=1,∴双曲线C的方程为:x23−y2=1
∵双曲线C:y2a2-x2b2=1(a>0,b>0)的离心率e=ca=52,∴e2=a2+b2a2=54,∴a2=4b2;①设顶点P(0,a)到渐近线ax-by=0的距离为d则d=abc=255,∴a
椭圆x29+y24=1中焦点为(±5,0)∴双曲线的焦点为(±5,0)∴c=5,焦点在x轴上∵双曲线的离心率等于52∴a=2∴b2=c2-a2=1∴x24-y2=1故答案为:x24-y2=1.
∵x225+y216=1∴其焦点坐标为(3,0),由已知,双曲线的实半轴长为3,又双曲线的离心率为2,所以c3=2,解得c=6,故虚半轴长为62-32=27,故双曲线的方程为x29-y227=1.故选
解题思路:熟记弦长公式解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.
椭圆x234+y2n2=1得∴c1=34−n 2,∴焦点坐标为(34−n 2,0)(-34−n 2,0),双曲线:x2n2−y216=1有则半焦距c2=n 2+
由题意知椭圆与双曲线共焦点,焦点为F1(-4,0),F2(4,0),根据椭圆的定义得:PF1+PF2=10,根据双曲线的定义得:PF1-PF2=215,∴PF1=5+15,PF2=5-15,在三角形P
双曲线x29-y216=1中,如图:∵a=3,b=4,c=5,∴F1(-5,0),F2(5,0),∵|PF1|-|PF2|=2a=6,∴|MP|≤|PF1|+|MF1|,|PN|≥|PF2|-|NF2
当直线的斜率k不存在时,直线方程为x=2,直线被双曲线所截线段的中点为(2,0),不符设直线与双曲线相交于A(x1,y1),B(x2,y2)把A,B代入到曲线方程且相减可得,(x1+x2)(x1−x2
∵双曲线方程x29−y216=1=1,∴a=3,b=4,c=9+16=5.(2分)由双曲线的定义,得|PF1|-|PF2|=±2a=±6,(4分)将此式两边平方,得|PF1|2+|PF2|2-2|PF
由题意,双曲线x29-y2m=1的右焦点为(9+m,0)在圆x2+y2-4x-5=0上,∴(9+m)2-4•9+m-5=0∴9+m=5∴m=16∴双曲线方程为x29−y216=1∴双曲线的渐近线方程为
由双曲线的几何性质易知圆C过双曲线同一支上的顶点和焦点,不妨设过双曲线右支的焦点和顶点所以圆C的圆心的横坐标为4.故圆心坐标为(4,±473).∴它到中心(0,0)的距离为d=16+1129=163.
∵x2a2-y2b2=1,C的焦距为4,∴F1(-2,0),F2(2,0),∵点(2,3)在双曲线C上,∴2a=(−2−2)2+(−3)2−3=2,∴a=1,∴e=ca=2.故答案为2.
设点P(x,y),由双曲线x29−y216=1可知F1(-5,0)、F2(5,0),∵PF1⊥PF2,∴y−0x+5•y−0x−5=-1,∴x2+y2=25,代入双曲线方程x29−y216=1,∴25
(本小题满分13分)(1)直线MA2方程为:y0(x-3)-(x0-3)y=0由方程组x=9x0y0(x−3)−(x0−3)y=0…(2分)代入双曲线方程化简得:点N的轨迹E的方程为:y216+x29
∵双曲线C:x29−y216=1中a=3,b=4,c=5,∴F1(-5,0),F2(5,0)∵|PF2|=|F1F2|,∴|PF1|=2a+|PF2|=6+10=16作PF1边上的高AF2,则AF1=
渐近线方程为y=±x/2,即x±2y=0,点P坐标为(m,n),且m²/4-n²=1,所以m²-4n²=4所以P到两条直线的距离d1=|m+2n|/√5,d2=
设双曲线方程为x29-y216=λ,将点(-3,23)代入双曲线方程,解得λ=14,从而所求双曲线方程的焦点坐标为(2.5,0),一条渐近线方程为y=43x,所以焦点到一条渐近线的距离是2,故答案为2
设所求双曲线为x29−y216 =λ(λ≠0),把点(-3,23)代入,得99−1216=λ,解得λ=14,∴所示的双曲线方程为4x29−y24=1.故选D.
双曲线x29-y216═1的a=3,b=4,c=a2+b2=5,设左右焦点为F1,F2.则有双曲线的定义,得||PF1|-|PF2||=2a=6,可设|PF1|=7,则有|PF2|=1或13,若P在右