已知双曲线x^2-y^2=4,直线l:y=k(x-1)试讨论实数k的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:47:09
焦点坐标是(0,-4√3),(0,4√3)那么设双曲线方程为y²/a²-x²/b²=1所以a²+b²=c²=48①又双曲线实轴长与
如果双曲线的实轴在x轴上:设方程为x^/a^-y^/b^=1渐近线方程为:y=±(b/a)x=±(1/2)x--->a=2b双曲线方程为x^/(4b^)-y^/b^=1---->x^-4y^=(4b^
直线过定点(0,2)1.k<0(1)直接与右半轴相切解出一个k值b(2)与渐进线平行得到k=-2/32.k=0,显然只有一个交点3.k>0解方程得到k=a综上知k=b并(-2/3,a)计算就不写了,很
先求出x²/16-y²/9=1的焦点坐标(-5,0),(5,0),横坐标右移8.得出本题焦点坐标(-13,0),(-3,0).
两个方程联立,得到关于X的一元二次方程,有伟达定理,两根之和等于-b/a,得到x1+x2=-2/k=3,k=-2/3,再代入就行了
有双曲线的焦点在圆上得c=10,如焦点在x轴上,有渐近线方程得b/a=4/3.结合c²=a²+b²解得a=6,b=8,双曲线方程为x²/36-y²/6
把y=k(x-1)代入双曲线x^2-y^2=4中得到关于x的一元二次方程,求出判别式△的表达式,(1)当△>0时,直线l与双曲线有两个公共点,(-2根号3)/3
直线代入双曲线,得:3x²-2mx-m²-1=0,则此方程有解即可,其判别式=4m²+12(m²+1)≥0,4m²+3≥0,因此式子恒成立,则m可以取
将y=kx-1代入4x^2-y^2=1(4-k^2)x^2+2kx-2=0直线与双曲线有两个公共点,说明(4-k^2)x^2+2kx-2=0有两个解即(2k)^2-4*(4-k^2)*(-2)>0-2
C1:c^2=a^2+b^2=5F1(-跟5,0),F2(跟5,0)渐近线y=+-b/a=+-1/2xC2:c^2=a^2+b^2=5F1(-跟5,0),F2(跟5,0)渐近线y=+-b/a=+-2x
两边除以36得,y^2/9-x^2/4=1,所以,c=√(9+4)=√13,焦点坐标是(0,√13)(0,-√13)(谁的系数为正,焦点就在谁的轴上,本题y的系数为正)
由双曲线的一条渐近线方程Y=-3/2X,可令双曲线方程为(Y-3/2X)(Y+3/2X)=k,则焦距=2根号[|k|+4/9*|k|]=2倍根号13解得k=9或-9所以(Y-3/2X)(Y+3/2X)
x^2-y^2/3=13x^2-y^2-3=0假设两点坐标是(x1,y1),(x2,y2)则(1)过这两点的直线垂直于y=kx+4(2)这两点的中点[(x1+x2)/2,(y1+y2)/2]在y=kx
当双曲线的焦点在x轴上时设解析式为x²/a²-y²/b²=1b/a=1;2a=2解得a=b=1此时解析式为x²-y²=1当双曲线的焦点在y轴
由题意可知F(1,0)a²+b²=1将点坐标带入方程9/4a²-1=1故a²=8/9b²=1-a²=1/9因为双曲线焦点在x轴,故渐近线方程
双曲线C1的方程设为:y^2/4-x^2/9=a,代入M(9/2,-1),可解出a,那么就很简单了,这中题目的方法均是如此,因为比较简单易懂
根据题意,双曲线C的一条渐近线方程为x-2y=0,则可设双曲线的方程为x2-4y2=λ(λ≠0),将点M(25,1),代入,得(25)2-4×12=λ,可得λ=16,故此双曲线的标准方程为:x216−
设:双曲线方程为Y^2/【a^2】-X^2/【b^2】=1(a>0,b>0),与Y^2=4X联立得:4X/【a^2】-X^2/【b^2】=1,a^2*X^2-4b^2*X+a^2*b^2=0-----
椭圆x²/8+y²/4=1的焦点为(土2,0),依题意设双曲线方程为3x^2-y^2=m(m>0),m/3+m=4,m=3,∴双曲线方程为3x^2-y^2=3.①设l:y=kx+4
若m>0,n>0,焦点在x轴上则又由渐近线方程知b/a=4/3(m=a^2,n=b^2)∴a=3k,b=4k,c^2=a^2+b^2=25k^2,∴e=c/a=5/3若m