已知双曲线与椭圆x^2 49 y^2 24=1共焦点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 08:52:47
椭圆X^2/9+y^2/25=1a=5,b=3所以c=4e=c/a=4/5所以焦点是(0,4),(0,-4)所以双曲线的离心率是14/5-4/5=2设双曲线是y^2/m^2-x^2/n^2=1则c^2
焦点坐标是(0,-4√3),(0,4√3)那么设双曲线方程为y²/a²-x²/b²=1所以a²+b²=c²=48①又双曲线实轴长与
由方程知:a1=7,b1=6,c1=根号(a1^2-b1^2)=根号13椭圆离心率e1=c1/a1双曲线离心率e2=c2/a2由题意知:e1/e2=3/7c2=c1=根号13所以求得:e2=(根号13
椭圆x^2/25+y^2/9=1焦点在x轴上a^2=25,b^2=9所以c^2=a^2-b^2=16c=±4因为双曲线与椭圆有相同的焦点,双曲线的离心率等于2所以c/a=2c=2a,a=±2a^2=4
问题应该问的是双曲线的标准方程设双曲线的标准方程为y^2/a^2-x^2/b^2=1已知双曲线与椭圆X²/27+Y²/36=1有公共的焦点,即c^2=9,焦点坐标为(0,±3).因
椭圆x²/25+y²/9=1中c'²=25-16=9,c'=3双曲线的离心率e=c/a=4,c=c'=3a=3/4,b^2=c^2-a^2=135/16此双曲线方程为:1
由题意设椭圆的方程为y2a2+x2b2=1(a>b>0).∵双曲线的焦点为(0,±4),离心率为e=2,∴椭圆的焦点 (0,±4),离心率e′=45.∴a=5.∴b2=a2-c2=9,∴椭圆
(1)设双曲线C1的标准方程为:x^2/a^2;-y^2/b^2=1;与椭圆C2:x^2/16+y^2/8=1焦点相同------>c^2=16-8=8;顶点是抛物线C3:y^2=4x的焦点F(1,0
椭圆的方程为x²/9+y²/25=1,a=5,b=3.c=4e=c/a,e=4/5双曲线的离心率等于14/5-4/5=2因为双曲线的焦点c=4,e=c/a=4/a=2,所以a=2b
依题意可设所求的双曲线的方程为y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵双曲线与椭圆x216+y225=1有相同的焦点∴λ+2λ=25-16=9…(9分)解得λ=3…(1
因为它的一条渐近线为y=x那么可以设双曲线方程为y^2-x^2=c而椭圆x^2/16+y^2/64=1的焦点是(0,4√3)、(0,-4√3)因为焦点在y轴,所以c>0且c+c=(4√3)^2故c=2
设双曲线方程为x2a2−y2b2=1(a>0,b>0)(1分)由椭圆x28+y24=1,求得两焦点为(-2,0),(2,0),(3分)∴对于双曲线C:c=2.(4分)又y=3x为双曲线C的一条渐近线,
4x²+y²=64x²/16+y²/64=1c²=64-16=48它的一条渐近线是y=x,是等轴双曲线,焦点在y轴上设为y²/a²
a=2c=3b^=5,焦点在y轴上,双曲线方程:y^2/4-x^2/5=1
(1)=1(2)(1)设椭圆方程为=1,a>b>0,由c=,=,可得a=2,b2=a2-c2=2,所以椭圆的标准方程为=1.(2)设A(x1,y1),B(x2,y2),由=2,得可得x1=
c^2=36-27=9,所以,c=3.得双曲线到焦点为M(0,3)和N(0,-3),A(x,4)为交点,则x^2/27+16/36=1,得x^2=15.2a=AN-AM=8-4=4.a=2a^2=4所
由椭圆x^2/25+y^2/9=1知a=5,b=3,所以c=4,它的焦点是(-4,0),(4,0),离心率是e=c/a=4/5所以双曲线的c=4,e=2-4/5=6/5,所以a=10/3从而b^2=c
此椭圆焦点在Y轴上,且C=2,又有题意及椭圆的第一定义可求椭圆的长轴长2a=根号[(-3/2)^2+(5/2+2)^2]+根号[(-3/2)^2+(5/2-2)^2]=2根号10,即a=更号10,故可
c=3,将y=4代入椭圆方程求得公共点坐标为M(±√15,4)设所求的双曲线方程为y²/a²-x²/b²=1,则a²+b²=3²M
∵椭圆方程为x249+y224=1,∴椭圆的半焦距c=49−24=5.∴椭圆的焦点坐标为(±5,0),也是双曲线的焦点设所求双曲线方程为x2a2−y2b2=1,则可得:ba=43a2+b2=25⇒a2