已知向量a1,a2,a3线性无关,则下列向量组中线性无关
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 02:45:09
3个3维向量线性相关的充分必要条件是它们构成的行列式等于0因为a1a2a3线性相关且|a1,a2,a3|=7k-7所以k=1.
设存在K1,K2,K3使K1(a1+2a2)+K2(a2+2a3)+K3(a3+2a1)=0整理得(K1+2K3)a1+(2k1+k2)a2+(K3+2k2)a3=0因为a1,a2,a3线性无关所以(
证明:设:k1(a1+2a2)+k2(2a2+3a3)+k3(3a3+a1)=0整理得:(k1+k3)a1+(2k1+2k2)a2+(3k2+3k3)a3=0∵a1,a2,a3线性无关∴k1+k3=0
用反证法若a1,a2,a3线性相关,则存在不全为0的k1,k2,k3使得k1a1+k2a2+k3a3=0别外存在唯一的一组p1,p2,p3使得p1a1+p2a2+p3a3=A两试相加有(k1+p1)a
(b1,b2,b3)=(a1+a2,a2-a3,a1+2a3)=(a1,a2,a3)KK=1011100-12因为|K|=2-1=1≠0所以K可逆所以r(b1,b2,b3)=r(a1,a2,a3)=3
设k1(a1+a2)+k2(a2+a3)+k3(a3+a4)+k4(a4-a1)=0整理后得到(k1-k4)a1+(k1+k2)a2+(k2+k3)a3+(k3+k4)a4=0由于a1,a2,a3,a
线性相关存在ki不同时等于0,使k1B1+k2B2+k3B3=0即方程组k1B1+k2B2+k3B3=0存在非零解等价于k1(a1-a2)+k2(a2-a3)+k3(a3-a1)=0即(k1-k3)a
证明:令k1(a1+a2)+k2(a2+a3)+k3(a3+a1)=0(k1+k3)a1+(k1+k2)a2+(k2+k3)a3=0因为向量组a1,a2,a3线性无关所以k1+k3=0k1+k2=0k
若是线性相关的,则存在m、n,使得b1=mb2+nb3,即a1+a2=m(a2+a3)+n(a1+a3),化简下,就是(n-1)a1+(m-1)a2+(m+n)a3=0,考虑到m-1、n-1、m+n不
a1,a2,a3,a4线性相关则存在x1,x2,x3使得a4=x1a1+x2a2+x3a3.(1)a1,a2,a3,a5线性相关则存在y1,y2,y3使得a5=y1a1+y2a2+y3a3.(2)(2
假设:a1+a2、a2+a3、a3+a1是线性相关的,则:a3+a1=m(a1+a2)+n(a2+a3)(m-1)a1+(m+n)a2+(n-1)a3=0因a1、a2、a3线性无关,则:m-1=0且m
对于向量组a1,a2,a3要线性相关,则k1*a1+k2*a2+k3*a3=0(其中k1,k3,k3不全为零)只要符合上式,就不是线性相关,而是线性无关例如A中的向量组k1*a1+k2*(3a3)+k
(b1,b2,b3)=11121-1-1121110-1-30231110-1-300-3满秩,所以线性无关
(2a1+3a2,a2-3a3,a1+a2+a3)=(a1,a2,a3)K其中K=2013110-31因为|K|=-1≠0所以K可逆所以r(2a1+3a2,a2-3a3,a1+a2+a3)=r(a1,
(2a1+a3+a4,a2-a4,a3+a4,a2+a3,2a1+a2+a3)=(a1,a2,a3,a4)KK=2000201011101111-1100由于a1,a2,a3,a4线性无关,则R(2a
(a1+a2,a2+a3,λa1+a3)=(a1,a2,a3)KK=10λ110011|K|=1+λ由已知r(K)=r(a1+a2,a2+a3,λa1+a3)=3所以λ≠-1.再问:那个行列式是怎么得
(a1+x2a2,a2+x3a3,a3+x1a1)=(a1,a2,a3)K.其中K=10x1x2100x31由已知a1,a2,a3线性无关,所以a1+x2a2,a2+x3a3,a3+x1a1线性无关的
A假设a1+a2,a2+a3,a3+a4,a4+a1线性相关,则存在不全为零的k1、k2、k3、k4,使得k1(a1+a2)+k2(a2+a3)+k3(a3+a4)+k4(a4+a1)=0即(k1+k
用定义设k1(a1+a2)+k2(3a2+2a3)+k3(a1-2a2+a3)=0重新分组:a1(k1+k3)+a2(k1+3k2-2k3)+a3(2k2+k3)=0因为a1,a2,a3线性无关,所以