已知向量组 具有相同的秩,且b3可由a1,a2,a3线性表示,求a,b的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:06:19
向量组a1,a2,---ak可用向量组b1,b2---bL线性表示所以存在矩阵P,满足(a1,a2,---ak)=(b1,b2---bL)P.所以r(a1,a2,---ak)=r[(b1,b2---b
必要性显然,唯一的极大无关组即向量组自身充分性:反证.假设a1,a2,...,am线性相关则存在一个向量可由其余向量线性表示不妨设a1可由其余向量线性表示为a1=k2a2+k3a3+...+kmam因
(b1,b2,b3)=(a1+a2,a2-a3,a1+2a3)=(a1,a2,a3)KK=1011100-12因为|K|=2-1=1≠0所以K可逆所以r(b1,b2,b3)=r(a1,a2,a3)=3
若是线性相关的,则存在m、n,使得b1=mb2+nb3,即a1+a2=m(a2+a3)+n(a1+a3),化简下,就是(n-1)a1+(m-1)a2+(m+n)a3=0,考虑到m-1、n-1、m+n不
(b1,b2,b3)=(a1,a2,a3)P,即B组可由A组线性表示.P=1111-2100-7因为|P|=-3*(-7)=21≠0所以P可逆.即有(b1,b2,b3)P^(-1)=(a1,a2,a3
(b1,b2,b3,b4)=r(a1,a1-a2,a1-a2-a3,a1-a2-a3-a4)=r(a1,-a2,-a2-a3,-a2-a3-a4)=r(a1,a2,a3,a4)=4,所以b1,b2,b
可以用利用线性无关的定义来证.这里有一种较取巧的证法:设向量组A与向量组B有相同的秩为r,A可由B线性表出,则A有极大线性无关组(a1,a2,...,ar)B有极大线性无关组(b1,b2,...,br
设a,b,c为同一平面内具有相同起点的任意三个非零向量,且满足a与b不共线丨b*c丨=|b|*|c|*sin(bc夹角)b*sin(bc夹角)等于以b,c为邻边
证明:由已知,(b1,b2,b3)=(a1,a2,a3)KK=111011001因为|K|=1≠0,所以K可逆所以r(b1,b2,b3)=r[(a1,a2,a3)K]=r(a1,a2,a3)=3所以b
线性无关.反证法.假设mb1+nb2+rb3=0,则ma1+n(a1+a2)+r(a1+a2+a3)=0;则(m+n+r)a1+(n+r)a2+(r)a3=0,与向量组a1,a2,a3线性无关矛盾.故
证:设n维向量组a1,a2,...,as可由向量组b1,b2,...,bt线性表示,且r(a1,a2,...,as)=r(b1,b2,...,bt).由向量组a1,a2,...,as可由b1,b2,.
因为a,tb,(a+b)/3终点在一条直线上所以向量a-tb,a-(a+b)/3=(2/3)a-(1/3)b共线所以a-tb=k(2a-b)/3但a,b不共线且非零,所以2k/3=1-k/3=-t解得
设元素B的核电荷数是y,A元素原子的质子数为m,因为原子中质子数等于核外电子数,所以A2+的核外电子数等于m-2,同理阴离子B3+的离子中带有(y-3)个电子.因为B3+和A2+具有相同的电子层结构,
已知:a,tb,1/3(a+b)的始点相同,终点在同一直线上,设三个向量对于的终点分别是A,B,C,则向量BA=a-tb,向量CA=a-1/3(a+b)=2a/3-b/3,向量BA与CA平行,∴1/(
方法一:b1-b2+b3=0,所以向量组B线性相关方法二:矩阵B=(b1,b2,b3)=(a1,a2,a3)C=AC,其中C=121-314-101|C|=0,所以秩(B)≤秩(C)<3,所以向量组B
设B元素的质子数为X,由已知B3+和A2-具有相同的核外电子数,元素原子A的质子数为Z,所以有Z+2=X-3故X=Z+5.即B元素的质子数为Z+5.不懂可以再问,