已知圆o的半径为1,弦AB=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:12:34
如图,过点O作OE⊥AB,OF⊥AC,垂足分别为E,F,∵AB=2,AC=3,∴由垂径定理得,AE=22,AF=32,∵OA=1,∴由勾股定理得OE=22,OF=12,∴∠BAO=45°,∴OF=12
三角形ABC中,AC=BC=2√3圆O半径为R,则BC/sinA=2R,即sinA=BC/2R=2√3/2R连接OC交AB与D,则OC垂直AB,理由是C是中点所sinA=CD/AC=(R-1)/2√3
三角形AOB是等腰三角形(OA=OB=1)又因为OA^2+OB^2=AB^2(1+1=2)所以角AOB=90°
用cad解决,很快的,NO.1:做AB为直径的圆,然后以A点做AC,AD为半径的圆,连接两弦,角度尺寸标注.OKNO.2:做一条直线,以这条直线做圆周角为60度的弧,再以这条弧三点做个圆,然后用SC比
勾股定理得,r^2=1/4r^2+(1/2ab)^2所以 (1/2ab)^2=3/4r^2所以1/2ab=二分之根号3倍的r所以ab=根号3倍的
1、2*(开根号18.75)2、半径=2
AB、CD在圆0同侧,作AB、CD的弦心距,垂足为E、F.则设圆心O到CD的距离OE为X,圆O到AB的距离OF心为(1+X).解两个直角三角形OAE、OCF.列二元二次方程组,解X=4,R=6.AB、
√【r²-(8/2)²】+√【r²-(6/2)²】=7r=5
(1)∵OA=OB=12,AB=12√2OA²+OB²=AB²∴∠AOB=90°作OF⊥AB于F则AF=BF(垂径定理)∴OF=½AB=6√2(直角三角形斜边中
设OC交AB于D∵C为弧AB的中点∴OD⊥ABOD=1设半径OB=OC=x则在Rt△BOD与Rt△CDB中BD²=BC²-CD²BD²=BO²-OD&
答;由题意可知.A.C.D三点在以B为圆心,a为半径的圆上.圆弧AC所对的圆心角是角ABC=60°.所对圆弧角是角ADC,则等于30°有因为角ADC等同于角ADE是以O为圆心的圆弧角,则圆弧AE对应的
运用弦于圆心的关系,过圆心做弦的垂线,求的O到AB的距离为2倍的根号3
三角形ABC中,H是A到BC的高,则外接圆半径为r,存在以下公式:2r=AB*AC/HH=AB*AC/(2r)=根号3*根号2/2=根号6/2所以BC=根号(AC^2-H^2)+根号(AB^2-H^2
第一题是(1)..第二题是(4)..第三题是(1)..第四题是(相等)..
/>过O点做OE垂直于AB,过O点做OF垂直于CD因为AO=5,AB=6AB/2=3根据直角三角形勾股定理,OE=4同理可得OF=3这里可发现三角形AOE三角形BOE三角形COF三角形DOF全部互为全
连OA、OBOA=OB=1so,OA:OB:AB=1:1:根号2so,∠OAB=45°作OD⊥于ACso,AD=二分之根号3因为OA=1所以∠OAD等于30°so,∠CAB=45°+30°=75°
连结弧两端与圆心,构成一三角形,弧=90度,圆心角=90度,三角形为直角三角形因半径相等,可根据勾股定理算得2*R2=AB2AB=2
(1)三角形AOB满足:AO^2+BO^2=AB^2=2所以:三角形AOB为RT三角形,角AOB=90度(2)三边到O的距离相等,所以O为三条角平分线的交点角OBC+角OCB=(1/2)角ABC+(1