已知在圆o中弦ab垂直于cd,oe垂直于bc,垂足为e
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:05:01
如图作辅助线,连接BO并延长交圆O于F,连接CO,CF,AF,做OM垂直于CD交圆O于MBF为直径,所以角BAF为直角又因为CD⊥AB,AF⊥AB,所以CD‖AF又因为OM⊥CD,所以OM⊥AF根据垂
先作OF⊥CD,OG⊥AB.∵OG在直径上,∴AG=BG=(5+9)÷2=7又∵AE=5,∴GE=9-5=4又∵AB⊥CD,OF⊥CD,OG⊥AB,∴矩形EFOG,GE=OF=4所以弦心距为4
很简单呐解:因为AB为直径且垂直CD所以CP=PD因为角APD=角CPB角B=角D所以三角形APD相似于三角形CPB所以AP比CP=DP比BP所以CP·PD=AP·BP即PC^2=PA*PB
证明:连接AC、BC则∠ACB=90°∵CP⊥AB∴弧BC=弧BD∴∠A=∠BCP∵∠CPB=∠CPA=90°∴△ACP∽△CBP∴CP/AP=BP.CP∴CP²=AP*PB
连接CO因为AO=CO,CO=BO所以∠CAB=∠ACO,∠OCB=∠OBC△ABC的内角和为180°所以∠ACB=∠CAB+∠CBA=90°由∠CAB与∠ACP互余,∠BCP与∠CBP互余所以∠CA
延长CO,交圆O于F,连接BF、DF因为CF是直径所以∠CBF=90所以∠ABC+∠ABF=90因为AB垂直CD所以∠DCB+∠ABC=90所以∠ABF=∠DCB所以BD弧=AF弧所以AD弧=BF弧所
作OG⊥AB交AB于G,作OF⊥CD交CD于F∵AE=5,EB=13∴AG=AB/2=(AE+EB)/2=(5+13)/2=9∴EF=AG-AE=9-5=4∵AB⊥CD∴OGEF为矩形∴OF=EG∴O
应是证明AE=BF因,EC⊥CD,FD⊥CD,所以,EC//FD,过O作垂直CD的半径交CD于M,则OM//EC//FD,DM=DM,(垂直弦的径平分弦),所以,EO=FO,又因AO=BO,AO-EO
连接AC、BC∵AB是直径∴∠ACB=90°∴∠BAC+∠ABC=90°∵AB⊥CD∴∠BAC+∠ACD=90°∴∠ABC=∠ACD∵F、A、C、B四点共圆∴∠AFC=∠ABC∵F、A、C、D四点共圆
连接AC∵AB是直径AB⊥CD∴AC=AD∴∠ACD=∠ADC∵∠AFC=∠ADC∠ACD=∠DFE∴:∠AFC=∠DFE
^2是平方直径AB⊥弦CD,由垂径定理得AB平分CD,所以AB垂直平分CD则AC=AD,得∠ACD=∠D又AE=CE,所以∠CAE=∠ACE,所以∠CAE=∠D由∠CAE=∠D,且公共角∠ACE=∠D
(1)大小关系看三角形OMB和ODN斜边均为半径,相等,而MB>ND所以OM
(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.
连结cb因为bf平行于cd且ab垂直于cd所以cb=df所以弧cb=弧df因为cd是直径且垂直ab故c点评分弧ab所以弧ab=2弧cb=2弧df
(1)如果角相同,则OE=OF.因为在圆内,则半径相同,属于等边三角形,顶角相同,AB=CD,.(2)
∵CD⊥AB∴EB=根号3在Rt△EOB中OE=根号3∴CE=3在Rt△CEB中CE=3,EB=根号3所以∠BCD=30°
做辅助线,连接OA=OB=OC=OD,因为AB大于CD,所以角OAB和角OBA小于角OCD和角ODC,所以OE小于OF.
作直径AF,则有:AF=2R;连接AD、CF,则有:∠ADC=∠AFC;可得:∠BAD=90°-∠ADC=90°-∠AFC=∠CAF;则有:弧BD=弧CF,可得:BD=CF,所以,AC²+B
证明:∵CD过圆心,且CD⊥AB∴弧CA=弧CB∴∠ACB=∠F∵∠BCE=∠FCB∴△BCE∽△FCB∴BC/CE=CF/BC∴BC²=CE*CF