已知在圆o中弦ab垂直于cd,oe垂直于bc,垂足为e

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:05:01
在 圆o中 AB ,CD是两条旋且AB垂直于CD于点G,OE垂直BC于E点,求证OE=二分之一AD

如图作辅助线,连接BO并延长交圆O于F,连接CO,CF,AF,做OM垂直于CD交圆O于MBF为直径,所以角BAF为直角又因为CD⊥AB,AF⊥AB,所以CD‖AF又因为OM⊥CD,所以OM⊥AF根据垂

在圆O中,弦AB垂直于弦CD于E,AE=5,BE=9,求圆心O到弦CD的距离

先作OF⊥CD,OG⊥AB.∵OG在直径上,∴AG=BG=(5+9)÷2=7又∵AE=5,∴GE=9-5=4又∵AB⊥CD,OF⊥CD,OG⊥AB,∴矩形EFOG,GE=OF=4所以弦心距为4

已知如图,在圆O中,AB是圆O的直径,CD是一条弦,且CD垂直AB于点P,连接BC,AD.求证PC^2=PA*PB

很简单呐解:因为AB为直径且垂直CD所以CP=PD因为角APD=角CPB角B=角D所以三角形APD相似于三角形CPB所以AP比CP=DP比BP所以CP·PD=AP·BP即PC^2=PA*PB

已知如图,在圆O中,AB是圆O的直径,CD是一条弦,且CD垂直AB于点P,连接BC,AD.求证PC^2=PA*PB 怎么

证明:连接AC、BC则∠ACB=90°∵CP⊥AB∴弧BC=弧BD∴∠A=∠BCP∵∠CPB=∠CPA=90°∴△ACP∽△CBP∴CP/AP=BP.CP∴CP²=AP*PB

已知在圆O中,AB是圆O的直径,CD是一条弦,且CD垂直AB于点P.连接BC,AD.求证:PC平方=PA.PB

连接CO因为AO=CO,CO=BO所以∠CAB=∠ACO,∠OCB=∠OBC△ABC的内角和为180°所以∠ACB=∠CAB+∠CBA=90°由∠CAB与∠ACP互余,∠BCP与∠CBP互余所以∠CA

已知,在圆O中,弦AB垂直CD,OE垂直BC,求证OE等于二分之一AD

延长CO,交圆O于F,连接BF、DF因为CF是直径所以∠CBF=90所以∠ABC+∠ABF=90因为AB垂直CD所以∠DCB+∠ABC=90所以∠ABF=∠DCB所以BD弧=AF弧所以AD弧=BF弧所

已知圆O中弦AB,CD互相垂直于E,AE=5cm,BE=13cm,求:CD到圆心O的距离.

作OG⊥AB交AB于G,作OF⊥CD交CD于F∵AE=5,EB=13∴AG=AB/2=(AE+EB)/2=(5+13)/2=9∴EF=AG-AE=9-5=4∵AB⊥CD∴OGEF为矩形∴OF=EG∴O

已知如图圆O中 AB是圆O的直径 CD是弦 点EF在AB上 EC垂直于CD FD垂直于CD求AE=BE

应是证明AE=BF因,EC⊥CD,FD⊥CD,所以,EC//FD,过O作垂直CD的半径交CD于M,则OM//EC//FD,DM=DM,(垂直弦的径平分弦),所以,EO=FO,又因AO=BO,AO-EO

已知,在圆O中,直径AB垂直弦CD于G,E是CD延长线上一点,AE交圆O于F 求证角AFC=角DFE

连接AC、BC∵AB是直径∴∠ACB=90°∴∠BAC+∠ABC=90°∵AB⊥CD∴∠BAC+∠ACD=90°∴∠ABC=∠ACD∵F、A、C、B四点共圆∴∠AFC=∠ABC∵F、A、C、D四点共圆

已知:如图,在圆O中,直径AB垂直于弦CD于G,E是CD延长线上一点,AE交圆O与F,求证:∠AFC=∠DFE.)

连接AC∵AB是直径AB⊥CD∴AC=AD∴∠ACD=∠ADC∵∠AFC=∠ADC∠ACD=∠DFE∴:∠AFC=∠DFE

已知圆o的弦CD与直径AB垂直于F,点E在CD上,且AE=CE.求证,CA²=CE·CD

^2是平方直径AB⊥弦CD,由垂径定理得AB平分CD,所以AB垂直平分CD则AC=AD,得∠ACD=∠D又AE=CE,所以∠CAE=∠ACE,所以∠CAE=∠D由∠CAE=∠D,且公共角∠ACE=∠D

在圆O中,弦AB大于弦CD OM垂直于AB ON垂直于CD M,N为垂足,求OM与ON的关系.

(1)大小关系看三角形OMB和ODN斜边均为半径,相等,而MB>ND所以OM

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

已知:如图,圆O中,直径CD垂直弦AB于E,弦BE平行CD.求证:劣弧AB=2弧DF.(第3题)

连结cb因为bf平行于cd且ab垂直于cd所以cb=df所以弧cb=弧df因为cd是直径且垂直ab故c点评分弧ab所以弧ab=2弧cb=2弧df

在圆o中,AB,CD是两条弦,OE垂直于AB,OF垂直于CD,垂足分别为EF.

(1)如果角相同,则OE=OF.因为在圆内,则半径相同,属于等边三角形,顶角相同,AB=CD,.(2)

如图,在圆o中,直径CD垂直于弦AB于点E,连接OB,CB,已知圆o的半径为2,AB=2倍的根号3,求角BCD的度数

∵CD⊥AB∴EB=根号3在Rt△EOB中OE=根号3∴CE=3在Rt△CEB中CE=3,EB=根号3所以∠BCD=30°

如图,在圆O中,AB,CD是两弦,且AB>CD,OE垂直于AB于点E,OF垂直于CD于点F,求证O

做辅助线,连接OA=OB=OC=OD,因为AB大于CD,所以角OAB和角OBA小于角OCD和角ODC,所以OE小于OF.

已知圆O中,弦AB垂直于CD于E,若圆O的半径为R,求证:AC²+BD²=4²

作直径AF,则有:AF=2R;连接AD、CF,则有:∠ADC=∠AFC;可得:∠BAD=90°-∠ADC=90°-∠AFC=∠CAF;则有:弧BD=弧CF,可得:BD=CF,所以,AC²+B

在圆O中,CD过圆心O,且CD垂直Ab于D,弦CF交AB于E.求证CB^2=CF乘CE

证明:∵CD过圆心,且CD⊥AB∴弧CA=弧CB∴∠ACB=∠F∵∠BCE=∠FCB∴△BCE∽△FCB∴BC/CE=CF/BC∴BC²=CE*CF