已知如图在圆O中,弦AD=弦BC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 01:01:15
已知如图,在圆O中,AB是圆O的直径,CD是一条弦,且CD垂直AB于点P,连接BC,AD.求证PC^2=PA*PB

很简单呐解:因为AB为直径且垂直CD所以CP=PD因为角APD=角CPB角B=角D所以三角形APD相似于三角形CPB所以AP比CP=DP比BP所以CP·PD=AP·BP即PC^2=PA*PB

已知如图,在圆O中,AB是圆O的直径,CD是一条弦,且CD垂直AB于点P,连接BC,AD.求证PC^2=PA*PB 怎么

证明:连接AC、BC则∠ACB=90°∵CP⊥AB∴弧BC=弧BD∴∠A=∠BCP∵∠CPB=∠CPA=90°∴△ACP∽△CBP∴CP/AP=BP.CP∴CP²=AP*PB

如图,已知在圆O中,弦AB⊥CD,连接AD、BC,OE⊥BC于点E.求证:OE=1/2AD

延长CO,交圆O于F,连接BF、DF因为CF是直径所以∠CBF=90所以∠ABC+∠ABF=90因为AB垂直CD所以∠DCB+∠ABC=90所以∠ABF=∠DCB所以BD弧=AF弧所以AD弧=BF弧所

已知,如图,在圆O中,弦AD=BC,连接AB,CD,求证AB=CD

∵弦AD=弦BC∴∠AOD=∠BOC∴∠AOD+∠AOC=∠BOC+∠AOC即∠COD=∠AOB∴弦AB=弦CD(定理:在同圆或等圆中,若两个圆心角、两条弧、两条弦中有一组量相等,则对应的其余各组量也

如图已知在圆O中,弦AD.BC的延长线交于点P,且BC=CP,C是BD弧的中点.求证,AB是圆O的直径

连接线段OC,线段BD,OC与BD相交于点Q,因为C是弧BD的中点,且O是圆心,所以,OC垂直BD,且平分BD,线段BD中点是Q,又,BC=CP,故QC是三角形BDP的中位线,所以QC平行DP,又QC

已知,如图,在圆O中,弦AB=CD,求证AD=BC

因为弦AB=CD,所以弧AB=CD,所以弧AD=BC,所以弦AD=BC

如图,已知在圆O中,AC是弦,AD切圆O于点A,AE平分∠CAD,CB⊥AD,垂足为D.求∠ACB的度数

∵AD是圆O的切线∴∠EAD=∠C∵AE平分∠CAD∴∠EAD=∠EAC∵AD⊥BC∴∠EAD+∠EAC+∠C=90°∴3∠C=90°∴∠C=30°

如图,已知圆O中,弦AB‖CF,D在CF的延长线上,DA交圆O于E,试说明AD*EC=DC*BC

连接AF∵圆O中,弦AB‖CF∴BC=AF又圆周角∠EAF与∠ECF所对的是同一条弦EF所以∠EAF=∠ECF又有公共角∠D∴△DAF∽△DCE∴AD/AF=DC/EC∴AD/BC=DC/EC即AD*

已知:如图,在⊙O中,弦AD=BC.求证:AB=CD.

证明:∵AD=BC,∴AD=BC.∴AD+BD=BC+BD.∴AB=CD.∴AB=CD.

如图,已知AB是圆O的直径,AC是弦,AB=2,AC=2,在图中画出弦AD,使AD=1,并求出∠CAD的度数.

分为两种情况:①如图1,过O作OE⊥AD于E,作OF⊥AC于F,由垂径定理得:AE=12AD=12,AF=12AC=122,∵OA=12AB=1,在△AEO和△AFO中,cos∠EAO=AEAO=12

如图,已知:AB是圆O的直径,BC与圆O相切于点B,圆O的弦AD平行于OC,若OA等于2,且AD+OC=6

分析:连接BD,根据AD∥OC,易证得OC⊥BD,根据垂径定理知:OC垂直平分BD,可得CD=CB,因此只需求出CB的长即可;延长AD,交BC的延长线于E,则OC是△ABC的中位线;设未知数,表示出O

如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线相交与点C,且AD=DC,求∠ABC的度数

∵AB为直径∴BD⊥AC∴∠ABD=90°∵BC为切线∴AB⊥BC又∵AD=DC∴BD平分∠ABC即∠ABD=∠DBC=45°

已知如图在圆O中AD=BC,求证AB=CD

证明:连接BD∵AD=BC∴∠ABD=∠CDB【等弦所对的圆周角相等】∵∠A=∠C【同弧所对的圆周角相等】∴⊿ADB≌⊿CBD(AAS)∴AB=CD

已知:如图,⊙O中弦AB=CD.求证:AD=BC.

证明:∵AB=CD,∴AB=CD,∴AB-BD=CD-BD,∴AD=BC.

已知如图,在圆o中,弦AB‖CD,求证:AD=BC

因AB//CD推出角AOC=角BOD推出弧AC=弧BD(相等的圆心角对应的弧长相等)连接ACBD则AC=BD在证明三角形ACD全等于三角形BDC就行了刚才的写错了

如图,已知AB是圆O的直径,BC为圆O的切线,切点为B,OC平行于弦AD,OA=r

(1)证明:连接OD,∵OC//AD,∴∠DAO=∠COB,∠ADO=∠DOC∴∠DOC=∠BOC,∵DO=BO,CO=CO∴⊿CDO≌⊿CBO(SAS),∴∠CDO=∠CBO=90º即DC

已知:如图,在圆O中,弦AD‖BC,OM⊥AB,ON⊥DC,垂足为M,N,求证∠OMN=∠ONM

证明:AD与BC平行,则弧AB=弧CD;(平行弦夹的弧也相等)所以,AB=CD;又OM⊥AB;ON⊥CD,则OM=ON.(同圆或等圆中,相等弦的弦心距也相等)所以,∠OMN=∠ONM.

已知:如图,割线AC与圆O交于点B、C,割线AD过圆心O.若圆O的半径是5,且∠DAC=30°,AD=13.求弦BC的长

作OM⊥BC于点M.∵AD=13,OD=5,∴AO=8∵∠DAC=30°,∴OM=4.在Rt△OCM中,OM=4,OC=5,∴MC=3∴BC=2MC=6.