已知定义在r上的函数f x=-2^x a 2^(x 1) b

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:32:53
已知函数fx是定义在R上的偶函数,当x大于等于0时,fx=x(x-2)求fx的解析式与图像

x>=0,f(x)=x(x-2)=x²-2x+1-1=(x-1)²-1,对称轴x=1,顶点(1,-1),开口向上.过(0,0)和(2,0).fx是定义在R上的偶函数:f(x)在x负

已知函数y=fx是定义在R上的奇函数,当x>0时,fx=x^2-2x,求x

这里我给你指导下,首先是你对函数的定义不够了解.对于y=f(x),这里的x表示的是一个自变量,y也是个随着x变化而变化的自变量.y=f(x)的自变量就是x,y=f(-x)的自变量就是-x,若y=f(√

已知函数fx 是定义在R上的奇函数,当x≥0时,fx=x(2-x) ,求函数f(x)的解析式

当x>=0时,由已知得f(x)=x(2-x),当x<0时,-x>0,由于函数是R上的奇函数,因此f(x)=-f(-x)=-[(-x)(2+x)]=x(2+x),所以函数解析式为f(x

已知函数y=fx是定义在R上的奇函数,当x>=0时,fx=x^2

已知函数y=fx是定义在R上的奇函数,当x>=0时,fx=x^2-2x,求x

已知fx是定义在R上的奇函数,且x>0时,fx=2x+3,求fx在R上的解析式

解析:解答本题要把整个x的区间R分成三段来考虑,即:1.X∈(-∞.0)2.X=03.X∈(0,+∞)1.当X∈(-∞.0),X0,则f(-x)=2(-x)+3=-2x+3,∵f(x)是定义在R上的奇

设fx是定义在r上的函数,对任意xy属于R,恒有fx+y=fx+fy (3)若函数fx在R上是增函数,已知f1=1,且.

令x=y=0f(0)=2f(0)f(0)=0令y=-xf(0)=f(x)+f(-x)=0f(x)=-f(-x)是奇函数f(2)=f(1)+f(1)=2f(2a)>f(a-1)+2=f(a-1)+f(2

已知定义在R上的偶函数fx满足fx=f(2-x),求证fx是周期函数

f(x)=f(2-x)又因为f(x)是偶函数,所以:f(x)=f(-x);所以:f(-x)=f(2-x)即:f(x)=f(x+2)所以,f(x)是周期函数,最小正周期是2如果不懂,请Hi我,再问:f(

已知定义在R上的函数fx满足f(x+2)f(x)=1,求证fx是周期函数

证明由f(x+2)f(x)=1得f(x+2)=1/f(x).(*)则f(x+4)=f(x+2+2).(利用*式)=1/f(x+2).(再次利用*式)=1/[1/f(x)]=f(x)故f(x+4)=f(

已知函数fx是定义在R上的奇函数 当x>0是时 fx=x的平方+三次根号下x 求fx

x0则有f(-x)=(-x)^2+三次根号下(-x)又f(x)为奇函数,所以f(-x)=-f(x)所以-f(x)=f(-x)=(-x)^2+三次根号下(-x)即f(x)=-x^2-三次根号下x所以有f

已知函数fx在R上有定义,且满足fx+xf1-x=x,1试求解析式2求fx的值域.

(1)∵f(x)+xf(1-x)=x①用1-x换x,得f(1-x)+(1-x)f(x)=1-x②联立①②得f(x)=(x^2)/(x^2-x+1)【^2是平方的意思】(2)根据配平f(x),可算出值域

已知函数fx是定义在R上的奇函数,当x>0时,fx= 1-2的-x次方,则不等式fx

解题思路:分析:先求f(x)的解析式,而题中已给出x>0时的表达式,故先由函数的奇偶性可得x<0和x=0时函数f(x)的解析式,之后再分别解两个不等式.解题过程:

三角函数的周期性.定义在r上的函数y等于fx满足fx+2=-1/fx

解析:∵f(x)=-1/f(x+2)令x=x+2代入得f(x+2)=-1/f(x+4)∴-1/f(x+4)=-1/f(x)∴f(x)=f(x+4)选择C再问:再问:请问能再问一题吗?11题的最后一小问

已知fx是定义在R上的寄函数.当x大于0时,fx=x^2-4x

设x0f(-x)=(-x)^2-4(-x)=x^2+4x因为函数为奇函数所以f(-x)=-f(x)f(x)=-x^2-4x因为是定义在R上的奇函数所以f(0)=0f(x)={x^2-4x(x≥0){-

已知定义在R上的奇函数fx满足f(x-4)=-fx且在区间[0,2]上是增函数则

 再答: 再答:根据图像以此类推就好啦再答:不懂得可以继续问(>_

已知函数fx=x+m/x,且f1=2,gx为定义在R上的奇函数,判断Fx=fx×gx的奇偶性

因f1=2所以m=1易知fx为奇函数所以F(-x)=f(-x)Xg(-x)=f(x)Xg(x)=F(x)所以F(x)为偶函数

已知函数fx一定义在R上的奇函数

解题思路:本题目考察函数奇偶性,列方程带入数值解得方案。解题过程:附件