已知抛物线ax的平方 2x 6[a不等于0]交x轴于A,B两点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 13:43:25
已知函数y=ax平方(a不等于0)与直线y=2x一3交于点A(1,b)求 (1)a和b的值 (2)抛物线y=ax平方的顶

(1)交点A(1,b)y=2x-3b=2*1-3=-1y=ax^2-1=a*1^2a=-1(2)y=-x^2顶点:O(0,0)对称轴:x=0(3)开口向下,x

已知抛物线y=ax的平方-2ax-b (a>0)与x轴的一个交点为B(-1,0)如题

(1)对称轴是直线x=1,点A的坐标是(3,0).(2)①如图1,连接AC、AD、CD,过点D作DM⊥y轴于M.方法一:∵A(3,0),C(0,-b),D(1,-a-b).∴OA=3,OC=b,MC=

已知二次函数y=x的平方-ax+a-2,证明不论a为何值,抛物线与x轴有两个交点

y=x²-ax+a-2△=a²-4a+8=a²-4a+4+4=(a-2)²+4>0抛物线与x轴有两个交点根的判别式

已知抛物线y=ax的平方(a>0)上有两点A,B其横坐标分别为-1,2,探究a的取值情况

把A,B两点的横坐标分别代入y=ax^2可得A,B两点的坐标分别为(-1,a),(2,4a)AB^2=(2+1)^2+(4a-a)^2=9+9a^2OA^2=(-1)^2+a^2=1+a^2OB^2=

已知抛物线Y=X平方+AX-2A平方与X轴的两个交点间的距离等于4,则A=

(x1-x2)²=16(x1+x2)²-4x1x2=16a²+8a²=16a²=16/9a=±4/3

已知抛物线y=ax的平方+bx+c开口向下,并且经过A(0.1)和M(2,-3),若抛物线的对称轴在y轴的左侧,

y=ax的平方+bx+c开口向下,∴a<0过A(0.1)和M(2,-3)∴1=0+0+c,c=1-3=4a+2b+1,2a+b=-2(1)如果抛物线的对称轴为直线x=-1,-b/(2a)=-1b=2a

已知抛物线y等于ax的平方减去2x加c与它的对称轴相交于点A(1,4),求这条抛物线的函数关系式

y=ax^2-2x+c对称轴为:1/a又抛物线y与它的对称轴相交于点A(1,4),所以1/a=1求得a=1所以y=x^2-2x+c代入A点坐标得1-2+c=4得c=5所以抛物线的函数关系式为:y=x^

已知抛物线y=ax平方+bx的顶点在直线y=-1/2x-1上,A(4,0),求这个抛物线的解析式

x=0时y=0所以过(0,0),又过A所以对称轴x=(0+4)/2=2顶点在对称轴上所以顶点横坐标是2在y=-1/2x-1上所以y=-1-1=-2顶点(2,-2)y=a(x-2)²-2过(0

已知二次函数y=x的平方+ax+a-2 证明无论a取何值.抛物线的顶点Q总在x轴的下方

因为x平方的系数等于1又1>0所以开口向上又△=a^2-4*1*(a-2)=a^2-4a+8设此式为②②式的△为16-32,恒小于零所以②式恒大于零所以△>0所以顶点一定在下方

已知抛物线y=ax平方-5x+2的顶点在x轴上,则a的值是

可知a不等于0当判别式=0时定与x轴只有一个交点,即顶点在x轴上判别式=25-8a=0所以a=25/8

已知抛物线y=ax的平方+bx+c的顶点坐标为(2,4)

(1)抛物线y=ax的平方+bx+c的顶点坐标为(2,4)-b/2a=2b=-4ay(2)=4a+2b+c=4c=4+4a(2)S三角形ODE:S三角形OEF=1:3DE:EF=1:3xE:xF=1:

已知函数y=x平方-绝对值x-2 的图像与x轴相交A、B两点,另一条抛物线y=ax平方-2x+4

函数y=x^2-|x|-12的图象与x轴交于A、B两点,另一抛物线y=ax^2+bx+,所以A点为(4,0)B点为(-4,0)(或者A点为(-4,0),B点为(4

1 已知点(2,5) (4,5)是抛物线y=ax平方+bx+c(a不等于0)上的两点,则这条抛物线的对称轴为

1、由已知点(2,5)(4,5)是抛物线y=ax平方+bx+c(a不等于0)上的两点所以点(2,5)(4,5)是关于抛物线对称轴的对称点所以抛物线的对称轴为x=(x1+x2)/2=(2+4)/2=32

已知函数Y=2X的图像和抛物线Y=AX的平方+3

12,由题意,A(1,2),B(0,3).所以s△AOB的底边OB=3,高为1.故s△AOB=1/2×3=3/2..13,由于(2,b)在y=2x上,所以b=4..把x=2,y=4代入y=ax

已知抛物线y=ax的平方+bx+c(a小于0)过点A(-2,0),O(0,0)

y=ax²+bx+c(a<0)过O(0,0)∴y=ax²+bx过点A(-2,0)0=4a-2bb=2a,a<0y=ax²+2ax对称轴是x=-1开口向下∴x离

已知抛物线y=3ax的平方+2bx+c.

当a=b=1,抛物线方程即为y=3x^2+2x+c△=sqrt(4-12c)=2*sqrt(1-3c)y与x轴交点为:(-2±2*sqrt(1-3c))/(2*3)=(-1±sqrt(1-3c))/3

已知抛物线y=ax+x+2当a=-1时求抛物线的顶点坐标和对称轴若a是负数时当a=a1时抛物线y=ax平方+x+2与x

当a=-1时,y=-x²+x+2=-(x-1/2)²+9/4∴顶点坐标(1/2,9/4),对称轴:直线x=1/2再问:下一问啊那是关键再答:下一问题目不完整。再问:当a=a1a=a

已知抛物线Y=aX^2(a

y=ax^2,x^2=2*(1/2a)*y,即p=1/2a所以F(0,p/2)即F(0,1/4a),准线l:y=-p/2即y=-1/4a(1)直线L斜率不存在.易得只有一交点,不合题意(2)设直线L: